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A Retrieval Strategy for Case-Based Reasoning
Using Similarity and Association Knowledge

Yong-Bin Kang, Shonali Krishnaswamy, and Arkady Zaslavsky

Abstract—Retrieval is a key phase in case-based reasoning
(CBR), since it lays the foundation for the overall effectiveness
of CBR systems. Its aim is to retrieve useful cases that can
be used to solve the target problem. To perform the retrieval
process, CBR systems typically exploit similarity knowledge and
is called similarity-based retrieval (SBR). However, SBR tends
to rely strongly on similarity knowledge, ignoring other forms of
knowledge that can be further leveraged to improve the retrieval
performance. This paper argues and motivates that association
analysis of stored cases can significantly strengthen SBR. We
propose a novel retrieval strategy USIMSCAR that substantially
outperforms SBR by leveraging association knowledge, encoded
via a certain form of association rules, in conjunction with simi-
larity knowledge. We also propose a novel approach for extracting
association knowledge from a given case base using various
association rule mining techniques. We evaluate the significance
of USIMSCAR in three application domains—medical diagnosis,
IT service management, and product recommendation.

Index Terms—Association knowledge (AK), association rule
mining (ARM), case-based reasoning (CBR), CBR retrieval.

I. Introduction

THE FUNDAMENTAL premise of case-based reasoning
(CBR) [1] is that experience in the form of past cases can

be leveraged to solve new problems. An individual experience
is called a case, and its collection is stored in a case base.
Typically, each case is described by a problem description
and the corresponding solution description. Among the four
typical phases in CBR (i.e., retrieval, reuse, revise, and retain),
retrieval is a key phase in CBR, since the success of CBR
systems is heavily reliant on the performance of retrieval [2].
Its aim is to retrieve useful or relevant cases that can be
successfully used to solve a target problem. If the retrieved
cases are not useful, CBR systems may not eventually produce
a suitable solution to the problem.
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Typically, retrieval is achieved through a specific strategy
leveraging similarity knowledge (SK) and this is referred to
as similarity-based retrieval (SBR) [2]. In SBR, SK is used
to estimate the usefulness of stored cases with respect to a
target problem. SK is usually encoded via similarity measures
between the problem and stored cases. By using the measures,
SBR finds cases ranked by their similarities to the problem,
and then their solutions are used to solve the problem.

However, there are two main problems in SBR. First, SBR
is too much dependent on domain experts to define SK in
practice [3]. Unfortunately, no clear methodology or general
approaches to support the modeling of such measures in
an intelligent way have been developed yet. Thus, defining
SK is still very complicated, time-consuming, and hard to
practice. This often also leads SK to be poor, subjective, and
inaccurate. Second, the definition of similarity measures is
very often static so that the definition is highly possible to
be applied to all target problems consistently. This leads to a
problematic situation where a similarity criterion defined in a
given domain is useful for some target problems but not useful
for some other problems. Thus, depending on target problems,
the retrieval performance of SBR is varied even in the same
domain, as shown in [4].

In this paper, we propose that association analysis of stored
cases can significantly enhance SBR. We propose a new re-
trieval strategy USIMSCAR1 that leverages association knowl-
edge (AK) in conjunction with SK. AK represents strongly
evident, interesting relationships between known problem fea-
tures and solutions shared by a large number of cases. We
propose that this knowledge is generated by a particular form
of association rules (ARs). Our notion of retrieval in this paper
is to retrieve a combined set of both cases and rules relevant
to a target problem, where the relevance is determined by
quantification methods using an integration of SK and AK.

When compared to SK, AK acquisition is carried out
through computer-supported association rule mining (ARM).
AK is also not subjective in that it is built from observing
the general evidence of associations between known problem
features and solutions. Furthermore, AK is dynamic in that
according to the characteristics of target problems, a best set of
rules can be differently chosen and leveraged for the retrieval
process. The key strength of USIMSCAR thus is to use AK
to complement SK, thereby enhancing the performance of

1USIMSCAR is an acronym for a retrieval strategy based on the unified
knowledge of similarity and soft-matching class ARs.
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TABLE I

Patient Case Base

Attributes Weights (wi) Patient 1 Patient 2 Patient 3 Patient 4 New Patient (NP)
Pain localiza 0.91 Right flank Right flank Epigastrium Epigastrium Right flank
Other slight pain 0.78 Vomit Sickness Nausea Nothing Nausea
Fever 0.60 38.7 37.5 36.8 38.2 37.8
Appetite loss 0.40 Yes Yes No Yes Yes
Age 0.20 11 35 20 25 14
Diagnosis Appendicitis Gastritis Stitch Gastritis ?
Similarity with NP 0.623 0.637 0.420 0.339

SBR significantly. Through extensive evaluation, we validate
that USIMSCAR significantly outperforms SBR and a well-
known retrieval method adopting the concept of similarity and
diversity [5] in three CBR applications: medical diagnosis,
IT service management, and product recommendation appli-
cations.

This paper is organized as follows. Section II discusses
our research motivation. Section III reviews the related work.
Section IV presents the background of SK and AK. Section V
proposes our approach for extracting AK. Section VI presents
our novel retrieval strategy USIMSCAR. In Section VII, we
evaluate USIMSCAR. Section VIII concludes this paper with
future work.

II. Motivating Scenario

Our research motivation is explained through a simple
medical diagnosis scenario shown in [6], where the weight of
each attribute was assigned by a domain expert. Consider that
a case base D includes four patient cases as shown in Table
I. For each case, the problem is described by five attributes
(i.e., symptoms) A1, ..., A5, and the solution denotes the
corresponding diagnosis. Our aim is to diagnose the correct
disease for a new patient (NP). We note that NP is really
suffering from appendicitis as specified in [6]. To predict a
diagnosis for NP, in principle, SBR identifies similar cases to
NP by finding cases whose attributes are similar to those of
NP. The following metric is applied, used in [6], to measure
the similarity between NP and each case C ∈ D

simg(NP, C) =

∑n

i=1 wi · siml(qi, ci)∑n

i=1 wi

, where

siml(qi, ci) =

{
1 − |qi−ci|

Amax
i −Amin

i

, (if Ai is numeric), and

1, if qi = ci, and 0, otherwise (if Ai is nominal)
(1)

where qi and ci are values of an attribute Ai of NP and the
case C, respectively; n is the number of attributes of cases;
and Amax

i and Amin
i denote the maximum and minimum values,

respectively, that Ai takes on in D.
Once similar cases to NP are selected, SBR determines a

diagnosis for NP using these cases. Assume that SBR chooses
the single most similar case to NP. As shown in Table I,
Patient 2 is chosen when applying the above metric, and
thus, the diagnosis choice for NP is gastritis. However, it
is an incorrect solution, since NP is really suffering from
appendicitis, thereby creating a dangerous situation for NP
threatening his/her life. Thus, it is clear that SBR has a

TABLE II

Example of Rules

ID Rule Confidence
r1: {right flank} ∈ pain localiza & {vomit} ∈

other slight pain & {38.3, 38.7} ∈ fever &
{yes} ∈ appetite loss & {11, 14, 15} ∈ age
→ appendicitis ∈ diagnosis

0.95

r2: {right flank} ∈ pain localiza & {38.5, 38.9}
∈ fever & {yes} ∈ appetite loss & {10, 13}
∈ age → appendicitis ∈ diagnosis

0.60

r3: {right flank} ∈ pain localiza & {37.5, 37.9}
∈ fever & {yes} ∈ appetite loss & {23, 25,
35} ∈ age → gastritis ∈ diagnosis

0.90

limitation due to its intrinsic characteristic, that is, its complete
reliance on similarity measures.

To overcome this limitation, we build AK from a given
case base, and exploit it during retrieval. AK reflects on how
known problem features are evidently associated with known
solutions, and represented in the form of IF–THEN rules. With
the scenario, suppose that we generate the rules shown in Table
II from D. Each rule has the form X → y, where X is the
antecedent and y is the consequent. Also, each rule holds with
confidence c indicating if a new problem is satisfied with the
antecedent, a likelihood for the problem to be satisfied with the
consequent is c. We propose that the confidence is formalized
using a rule interestingness measure in Section V.

We perform two steps for leveraging such rules during
retrieval. First, we quantify the usefulness of each case C

for NP by combining the similarity between C and NP, with
the confidence of those rules relevant to C. We say that a
rule r : X → y is relevant to a case, if r is supported by
the case (i.e., the case contains a problem and solution that
are highly similar to X ∪ y). Thus, r1 and r2 are relevant to
Patient 1, while r3 to Patient 2. To retrieve cases similar to NP,
we further leverage the confidence of those rules relevant to
the cases, with their similarities to NP. This aims to improve
the usefulness of the retrieved similar cases. If we apply
multiplication for the combination, the usefulness of Patient
1 for NP is 0.623 × 0.95 = 0.592, while that of Patient 2 is
0.637 × 0.90 = 0.573. Thus, although the similarity of Patient
1 to NP is lower than that of Patient 2, its usefulness can be
higher if its confidence is higher than that of Patient 2.

Second, we directly use discovered rules to identify specific
rules that are relevant to NP. The goal is to further identify
strongly evident rules that are relevant to NP and then quan-
tify their usefulness with their confidence via a combination
scheme, thereby leveraging the usefulness in the retrieval
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process. In our approach, the relevance degree between a
rule and NP is defined via their similarity (more discussed
in Section VI). With the aforementioned scenario, if we adopt
multiplication for the combination, the usefulness of r1 for NP
is 0.722×0.95 = 0.686 and that of r3 is 0.714×0.90 = 0.646.
As r1’s usefulness is higher than that of r3, we might conclude
that r1 is more relevant to NP.

Through both steps, although Patient 1 is lower than Patient
2 in terms of the similarity to NP, we may draw the correct
solution for NP from Patient 1 and r1, if we measure and
quantify their usefulness with respect to NP. Note that Patient
1 has the solution appendicitis and r1 is associated with the
same one which is the real diagnosis for NP.

Consequently, given a new problem Q, our objective is not
only to retrieve useful (or relevant) cases for the problem,
but also to identify useful ARs. These cases and rules, in
conjunction with their quantified usefulness, are outcomes of
our proposed USIMSCAR. Our approach can complement
the limitation of SBR, thereby improving the overall retrieval
performance. For example, as explained, in a situation where
SBR retrieves a wrong case for Q via similarity measures,
our approach can complement this situation by additionally
leveraging AK. In some cases, we might also hardly find
those cases similar to Q in SBR. In such cases, we can also
get benefits by additionally approximating relevant cases and
rules for Q by combining SK and AK. Also, if there exists
a situation where SBR retrieves too many cases very similar
to Q, our approach can be used to further choose a smaller
number of optimal cases among them through AK.

III. Related Work

SBR has been widely used in various CBR applications,
such as medical diagnosis [7], [8], IT service management [9],
product recommendation [10], and personal rostering decisions
[11], to predict relevant cases having an appropriate solution
for a target problem. SBR has been typically implemented
through k-nearest neighbor retrieval or simply k-NN [2]. The
idea of k-NN is that retrieval is achieved through retrieving the
k most similar cases to the target problem. However, a well-
known limitation of k-NN lies in allowing irrelevant attributes
to influence the similarity computation.

Over the years, approaches integrating data mining (DM)
and k-NN have often been applied in the CBR research to
improve k-NN through three main schemes. The first is to
integrate feature selection (FS) or feature weighting (FW) into
k-NN. In this context, FS is used to choose relevant features of
cases [8], [11], FW is applied to estimate optimal weights of
the original features of cases [12], [13], or their combination
is used to leverage their advantages [7]. The second scheme
is to combine data clustering with k-NN, where the structure
of clustered cases is leveraged to guide more relevant cases
[14], [15]. Given a case base, a set of clusters is constructed,
where each cluster represents a group of relevant cases. For
case retrieval, the similarity between a target problem and each
case is combined with the relevance of the clustered group
containing the case considered. The third scheme is to apply
both SBR and DM techniques together to find relevant cases

against the target problem. For example, Chuang [16] shows
how to integrate DM with SBR to improve liver diagnosis.
Given a target problem, once a DM method (a backpropagation
neural network) is applied on the case base, some cases
thought to be relevant to the problem are retrieved. These
cases are then examined to check whether these are sufficiently
similar to the target problem through SBR. Only similar cases
are finally used as a retrieval result for the problem. Unlike to
these schemes, our approach is based mainly on the use of AK
built via ARM. AK identifies interesting associations between
case features and solutions in the case base, while FS and FW
focus on identifying key case features characterizing the case
base. Also, while the third scheme uses DM separately from
SBR, we incorporate AK into the retrieval process to enhance
SBR.

SBR has also been integrated with statistical learning.
For example, it is proposed that k-NN can be enhanced by
dynamically finding an optimal number of the nearest cases
for a target problem using the distribution of distances between
potentially similar cases to the problem [17]. Also, a genetic
algorithm is proposed to optimize the number of the nearest
neighbors for the target problem [18]. These approaches are
based on the observation that k-NN typically uses a fixed
number of neighbors, leading to weaken the predictability
of desired similar neighbors. However, a problem with these
approaches is that the optimal set of the nearest cases are ob-
tainable by using only SK. That is, using similarity measures,
the candidates of relevant cases for the target problem are
found, and then these are further examined through statistical
methods using their similarity scores. Unlikely, our approach
leverages two different forms of knowledge [i.e., AK (statisti-
cal information drawn from ARs) and SK] to enhance the use
SK for retrieval.

The evolution of machine learning has resulted in retrieval
approaches that combine SBR and rule-induction (RI) methods
to improve SBR. RI systems often learn domain-specific
knowledge and represent it as IF–THEN rules. It is proposed
that such rules can be used for determining weights of case
features in SBR [19]. Also, Huang et al. [20] show that
decision tree algorithms can be applied to find domain-specific
rules from a given case base. From such rules, users choose
relevant rules according to the thresholds set up by experts.
The extracted rules are then used to guide a target problem
to its most similar case group and to estimate the weights of
case features. Such knowledge is eventually used to retrieve
the most similar case from the case base. A retrieval model in
[4] dynamically selects SBR or a RI method (using decision
trees) for the target problem, considering similarities and
consistencies of cases in a case base. Our approach is different
from these approaches in that: 1) AK is not used to measure
weights of case features, but to refine the cases retrieved by
SBR and guide more specific rules to the target problem; 2)
AK is built not manually but automatically through ARM; and
3) unlike model [4], the leveraging of AK is integrated into
the retrieval process to strengthen SBR.

Domain knowledge (DK) has also been combined with
SBR. DK has been used to refine similarity measures to
retrieve more accurate cases for a target problem. DK can
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be encoded as the form of accurate training cases where these
are chosen from the feedback about the usefulness of some
cases previously assessed by domain experts [21]. It is also
proposed that DK can be represented in the form of semantic
knowledge capturing semantic meanings of cases to enhance
the accuracy of SBR [22]. However, DK often does not exist
in an explicit form, and thus implicitly available through the
support of human domain experts who use informal methods
when being asked to describe such knowledge. Unfortunately,
it is hard to implement, especially if given domains are poor in
domain theory. In contrast, building AK is straightforward as it
is acquired via an analysis of cases, a fundamental knowledge
source in CBR, without the support of domain experts.

IV. Background of SK and AK

Prior to presenting our proposed USIMSCAR, this section
provides the background of SK and AK. First and foremost,
we present our case representation scheme. To represent cases,
we choose the attribute–value pairs representation, widely used
in many CBR systems, due to its simplicity, flexibility, and
popularity. Let A1, ..., Am be attributes defined in a given
domain. An attribute–value pair is a pair (Ai, ai)i∈[1,m], where
Ai is an attribute (or feature2) and ai is a value of Ai. A
case C is the form of C = (X, Y ) where X is a problem
X = {(A1, a1), ..., (Am−1, am−1)}, and Y is the corresponding
solution Y = (Am, am). We refer to Am as a solution attribute.
A case base is a set of cases.

A. Background of SK

In a CBR context, SK is referred to as the knowledge
encoded via measures computing similarities between a target
problem Q and cases. In SBR, SK is used to represent a
heuristic for estimating the usefulness of stored cases with
respect to Q. The higher the similarity between Q and a
case C is, the more useful C is for Q. A formulation of
similarity measures suitable for cases represented by attribute–
value pairs is often based on a widely used principle. It is the
local–global principle that decomposes a similarity measure by
local similarities for individual attributes of cases and a global
similarity aggregating these similarities [21]. An accurate local
similarity function relies on attribute types. A global similarity
function can be arbitrarily complex, but simple functions are
usually used such as weighted average aggregation [21]. For
example, referring to (1), simg is a global similarity measure
and siml is a local similarity measure.

B. Background of AK

Our underlying premise in this paper is that SBR can be
qualitatively enhanced by the inclusion of AK. AK aims
to represent evidently interesting relationships shared by a
large number of relevant stored cases, using a combination
of various DM techniques. These are ARM [23], class ARM
[24], and soft-matching ARM (SARM) [25].

2To simplify the presentation, we do not distinguish between terms attributes
and features, and use these terms interchangeably.

1) ARM: ARM aims to mine certain interesting relation-
ships, called associations, in a transaction database [23]. It
focuses on discovering a set of highly co-occurred features
shared by a large number of transactions in the database. A
formal definition of ARs is described as follows [23].

1) Let I be a set of distinct literals called items. A set of
items X ⊆ I is called an itemset.

2) Let D be a set of transactions. Each transaction T ∈ D
is a set of items such that T ⊆ I. We say that T contains
an itemset X, if X ⊆ T holds.

3) Every AR has two parts: an antecedent and a consequent.
An AR is an implication of the form X → Y , where
X ⊆ I is an itemset and is the antecedent and Y ⊆ I is
an itemset which is the consequent, and X ∩ Y = ∅.

4) The rule X → Y has support s in D if s% of transactions
in D contain X ∪ Y . This holds in D with confidence c

if c% of transactions in D that contain X also contain
Y .

In a CBR context, ARM can be used to discover interesting
relationships from a given case base. A transaction and an item
can be seen as a case and an attribute–value pair, respectively.
Apriori [23] is one of the traditional algorithms for ARM.
Interestingness measures are useful to evaluate the quality and
rank a large number of ARs extracted [26]. As candidates of
the measures, the support and confidence criteria are often
used. In general, the problem of ARM is to generate all ARs
that have support and confidence not less than a user-specified
minimum support minsupp and a user-specified minimum
confidence minconf, respectively.

2) Class ARM: Class association rules (CARs) [24] are
a special subset of ARs whose consequents are restricted to
a single target variable. In a CBR context, a CAR is seen as
an AR whose consequent holds the item formed as a pair of
a solution attribute and a value of it. We call such an item
a solution item. A CAR thus has the form X → y, where
X ⊆ I is an itemset and y ∈ I is a solution item. From
Table I, a simple CAR can be expressed as (fever, 38.7) →
(diagnosis, appendicitis).

It is noteworthy that to represent AK, we adopt the CAR
representation. AK is encoded to reflect how certain problem
features are interestingly associated with specific solutions in
a given case base. Considering this, note that the form of a
CAR X → y enables us to represent an association between
an itemset X (i.e., a set of problem features) and a solution
item y (i.e., the corresponding solution) in a simple way.

3) SARM: Consider a rule X → Y . A limitation of
traditional ARM algorithms (e.g., Apriori [23]) is that itemsets
X and Y are discovered based on the equality relation. Unfor-
tunately, when dealing with items similar to each other, these
algorithms may perform poorly. For example, in a supermarket
sales database, Apriori cannot find rules like 80% of the
customers who buy products similar to milk (e.g., cheese) and
products similar to eggs (e.g., mayonnaise) also buy bread. To
address this issue, the soft-matching criterion was proposed
[25], where the antecedents and consequents of ARs are found
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by similarity assessment.3 Using this criterion, the problem of
SARM is to find all rules of the form X → Y , where the soft
support and soft confidence of each rule are not less than min-
supp and minconf, respectively. The definitions of soft support
and soft confidence are generalized by using support and confi-
dence. This generalization is done by allowing items to match,
as long as their similarity exceeds a user-specified minimum
similarity minsim). By employing the concept of similarity,
the soft-matching criterion can be used to model richer rela-
tionships among features of cases than the equality relation.

V. AK Representation

This section presents our approach for extracting and repre-
senting AK using the techniques outlined in Section IV. The
aim of building AK is twofold: 1) representing strongly evident
associations between known problem features and solutions
from a given case base, and 2) valuably leveraging these
associations along with SK in USIMSCAR.

We propose to represent AK via special CARs whose an-
tecedents are determined by using the soft-matching criterion.
We refer to these rules as soft-matching class association rules
(SCARs). A SCAR has an implication of the form X → y,
where X is a frequent itemset representing problem features
that occur frequently and are discovered by the soft-matching
criterion from the case base. And y denotes a solution item.

A SCAR X → y thus implies that a target problem Q

is likely to be associated with the solution contained in y,
if Q’s problem features are sufficiently similar to X. The
likelihood is quantified by the interestingness of the rule.
As mentioned, support and confidence are often used for
this purpose. On some occasions, their combination is also
used. Often, a rationale for doing so is to define a single
optimal interestingness (e.g., the Laplace measure [27]). We
now present the definition of SCARs.

1) Let D be a set of cases, each being described by
attributes A1, ..., Am. A pair (Ai, ai)i∈[1,m−1] is an item.
A pair (Am, am) is a solution item. Let I be a set of
items. The k number of items in an itemset is called
k-itemset or simply an itemset.

2) Let sim(x, y) be a function computing the similarity
between two items x, y ∈ I in terms of their attribute
values. For this, we construct an m×m similarity matrix,
where m is the total number of items in D. Each entry of
this matrix represents a similarity score between any two
items. We say that x and y are similar, iff sim(x, y) ≥
minsim. The similarity is normalized into [0, 1].

3) Let asim(X, Y ) be a function that computes the asym-
metric similarity of X with respect to Y , where X, Y ⊆ I

are two given itemsets and |X| ≤ |Y |
asim(X, Y ) =

∑

x,y

sim(x, y)/|X| (2)

where x ∈ X and y ∈ Y are two items whose attributes’
labels are the same. We say that X is a soft subset of
Y (X ⊆soft Y ) or Y softly contains X, iff asim(X, Y ) ≥
minsim. We also say that Y contains X, if X ⊆ Y holds.

3The detailed information about this criterion is found in [25].

4) The soft-support sum of an itemset X, softsuppsum(X),
is defined as the sum of the asymmetric similarities of X

with respect to cases in D that softly contain X. The soft
support of X, softsupp(X), is then computed by dividing
softsuppsum(X) with |D|.

5) The soft-support sum of a rule, r : X → y, is defined
as the sum of the asymmetric similarities of X with
respect to cases in D that softly contain X, and contain
y. The soft support of r, softsupp(r), is then computed
by dividing softsuppsum(r) with |D|. The soft-confidence
sum of r is defined as the sum of the asymmetric
similarities of X with respect to cases in D that softly
contain X and also contain y. The soft confidence of r,
softconf(r), is computed by dividing r’s soft-confidence
sum with |D|.

A rule item is of the form 〈X, y〉 and basically represents a
SCAR X → y. The key operation for SCAR mining is to find
all rule items that have soft support not less than minsupp.
We call such rule items frequent rule items. For all the rule
items that have the same antecedent, the one with the highest
interestingness is chosen as a possible rule (PR). We use the
Laplace measure [27] of interestingness that combines soft
support and soft confidence such that they are monotonically
related (i.e., positively correlated). Given a rule item r, its
Laplace measure, Laplace(r), is given as

|D|softsupp(r) + 1

|D|softsupp(r)/softconf(r) + 2
. (3)

Since |D| is the constant, it is easy to see that this measure
is monotone in both soft support and soft confidence. If
Laplace(r) ≥ a user-specified minimum level of interesting
minint, we say r is accurate. A set of SCARs consists of all
the PRs that are frequent and accurate.

The SCAR mining algorithm is presented in Algorithm 1.
It first computes the soft support of an individual rule item
and decides whether it is frequent. In each subsequent pass, it
begins with the seed set of rule items found as frequent in the
prior pass. It uses the seed to generate new possibly frequent
rule items called candidate rule items. The soft support of
these rule items are computed during the pass over D. At the
end of this pass, it decides which of the candidate rule items
are frequent. From the frequent rule items, it produces SCARs
after a rule pruning.

Let k-rule item be a rule item whose antecedent has k items.
Let Fk be a set of frequent k-rule items. The detailed algorithm
is described as follows.

Step 1: We find a set of frequent 1-rule items F1 (line 1).
Given a 1-rule item X, if softsupp(X) ≥ minsupp, then X is
added to F1. A set of SCARs is then generated by only finding
PRs from F1 (line 2).

Step 2: For each subsequent pass k, we generate a set of
candidate rule items CRk from Fk−1 found in the (k−1)th pass
(line 5). This process is similar to apriori-gen() in Apriori [23]
except that only those (k−1)-rule items with the same solution
item are used to generate the candidate k-rule items. We then
scan D and update the soft support of rule items in CRk (lines
6–15). Finally, we generate a new frequent rule item set Fk by
extracting rule items from CRk whose soft support ≥ minsupp.
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Algorithm 1 SCAR Mining Algorithm
1: F1 = findFrequentRuleitems(D);
2: SCAR1 = genRules(F1);
3: k = 2;
4: while Fk−1 �= ∅ do
5: CRk = generateCandidatesRuleitems(Fk−1)
6: for each case C ∈ D do
7: for each r : X → y ∈ CRk do
8: if r ⊆soft C then
9: softsuppsum(X) += asim(X, C);

10: if y = C.solution then
11: softsuppsum(r) += asim(X, C);
12: end if
13: end if
14: end for
15: end for
16: Fk = {r ∈ CRk | softsupp(r) ≥ minsupp};
17: SCARk = genRules(Fk);
18: k++;
19: end while
20: SCARU =

⋃
k≥minitemsize SCARk;

21: SCARset = pruneRules(SCARU);
22: Return SCARset;

A set of rule items is then generated by only choosing PRs
from Fk (lines 16 and 17).

Step 3: From SCAR1, ..., SCARk, we choose only sets
whose k is greater than or equal to a user-specified minimum
itemset size minitemsize, and store them in a set SCARU (line
20). Our intuition is to choose only significant frequent rule
items from the large number of resulting frequent rule items.
Our premise is that the longer the frequent rule item, the
more significant it is. Very often, the significance of frequent
itemsets correlates with their length [28]. We then apply a rule
pruning on rule items in SCARU (line 21). A rule r is pruned,
if Laplace(r) < minint. The set of rule items SCARset after
the pruning is finally returned.

For ease of notation of SCARs, we follow the notation of
the rules shown in Table II. In the antecedent of each rule,
values found to be similar for a given item are shown in an
ordered set enclosed by parentheses. The set implies that the
value at the leftmost position is similar to the other values
in the set. For example, referring to {11, 14, 15} ∈ age in
r1, the value 11 of the age attribute is similar to 14 and 15.
The interestingness, measured by the Laplace measure, of each
SCAR is marked under confidence in Table II.

VI. USIMSCAR: The Unique Retrieval Strategy

This section presents USIMSCAR that leverages AK en-
coded via SCARs along with SK to enhance SBR. The main
challenge is how to combine these two types of knowledge
effectively, thereby enhancing the retrieval performance of
SBR. We address it by proposing the USIMSCAR algorithm.
We also illustrate how it performs with an example scenario.

A. USIMSCAR Algorithm

Our rationale for leveraging AK in USIMSCAR is twofold:
1) enhancing the usefulness of cases, retrieved via SK, with
respect to a new problem Q by additionally including the
SCARs, thereby meaningfully exploiting the cases with their
usefulness; and 2) directly leveraging AK by finding those

Algorithm 2 USIMSCAR Algorithm
1: SC = retSimCases(ksc, Q, D);
2: SS = retSimScars(kss, Q, SC, SCARset);
3: for each case C ∈ SC do
4: rC = findMostRelSCAR(C, SCARset);
5: if rC �= ∅ then
6: usf(Q, C) = simg(Q, C) ∗ Laplace(rC);
7: else
8: usf(Q, C) = simg(Q, C) ∗ minint;
9: end if

10: obj = createObject(C, usf(Q, C));
11: RR = RR

⋃
obj;

12: end for
13: for each SCAR r ∈ SS do
14: usf(Q, r) = simg(Q, r) ∗ Laplace(r);
15: obj = createObject(r, usf(Q, r));
16: RR = RR

⋃
obj;

17: end for
18: RR = enhanceObjects(RR);
19: Return RR;

SCARs whose usefulness is high with respect to Q, thus
valuably exploiting them with their usefulness.

Given a new problem Q, USIMSCAR generates a retrieval
result (RR) consisting of potentially useful objects that can
be used for solving Q. Such objects can be chosen as in the
form of cases from a given case base D and also as in the
form of SCARs from SCARset generated by Algorithm 1. The
USIMSCAR algorithm is described as follows.

Step 1: From D, we find the ksc most similar cases (SC) to
Q (line 1). We denote simg(Q, C) as the similarity between
Q and a case C ∈ D.

Step 2: From SCARset, we find the kss most similar SCARs
(SS) to Q (line 2). The aim is to discover specific SCARs
that are highly similar to Q and exploit them valuably in Step
4. We observed that there are often specific SCARs whose
antecedents are highly similar to Q and are not witnessed in
cases in SC. The finding of such rules thus enables us to
identify additionally useful rules for Q.

But a question raised is how to define a function simg(Q, r)
computing the similarity between Q and a SCAR r ∈ SCARset.
Our answer to it lies in our choice of the CAR representation
for SCAR mining. Note that SCARs have the same structure
with cases: the antecedents and consequents correspond to the
problems and solutions of cases, respectively. Thus, simg(Q, r)
can be defined in the same way as simg(Q, C) in Step 1. If
there is no item with an attribute, we set the similarity for it as
0. Referring to Tables I and II, simg(Patient 1,r2) is computed
by aggregating similarities for attributes pain localiza, fever,
appetite loss, and age.

Note that when measuring the similarity between values for
a case C and an item of a rule r on the same attribute, we use
the value of the attribute of C and the value, at the leftmost
position, belonging to the attribute of the item in r. Referring
to Tables I and II, if we measure the similarity between 38.7
for Patient 1 and a set of the values {38.3, 38.7} for r1 on
fever, the similarity between 38.7 and 38.3 is computed. The
reason for choosing to use 38.3 lies in the interpretation of the
notation of {38.3, 38.7} ∈ fever. As explained in the previous
section, the notation implies that 1) 38.3 is an anchor value in
a sense that it is compared by all the other values (i.e., 38.7) in
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the set, and 2) this anchor value is similar to all the other values
in the set. Thus, 38.3 is chosen to measure the similarity.

Note that to generate SS, we consider only SCARs in
SCARset such that their antecedents are soft subsets of cases in
SC rather than all SCARs in SCARset for efficiency. Assume
that each SCAR has the form X → y. For each SCAR
r ∈ SCARset, we can find a case C ∈ SC that softly contains
r’s X. Since C is similar to Q (C ∼ Q) and X ⊆soft C, the
relation X ∼ Q can be derived. By doing so, we can reduce
a number of candidates that consist of SS.

Step 3: For each case C ∈ SC, we select the most relevant
SCAR rC ∈ SCARset (line 4). We say that in SCARset, a SCAR
r : X → y is relevant to C, if X ⊆soft C and y is equal to
C’s solution. Among the relevant SCARs in SCARset to C, we
say that a SCAR whose interestingness is highest is the most
relevant SCAR to C, denoted by rC.

We then quantify the usefulness of C with respect to
Q, usf(Q, C), by integrating simg(Q, C) (i.e., SK) and
Laplace(rC) generated from AK via multiplication (line 6).
The higher such usefulness is, the more useful the case C

is for Q. If there is no candidate for rC, we use minint as
Laplace(rC) (line 8). The intuition is that since such rC is not
relevant to Q at all, we treat it to be the least interesting rule
with respect to Q by assigning it to the lowest boundary of
interestingness, minint. We then cast the case C into a generic
object encapsulating any cases and SCARs. This object has
two fields: inst stores C and usf stores usf(Q, C). Then, the
object is added to RR (lines 10 and 11).

Step 4: For each rule r ∈ SS, we quantify the usefulness of
r with respect to Q by integrating simg(r, Q) (i.e., SK) and
Laplace(r) acquired from AK via multiplication (line 14). We
then cast r into a generic object, where inst stores r and usf
stores usf(Q, r). This object is added to RR (lines 15 and 16).

Step 5: We further enhance the usefulness of each object
oi ∈ RR, where 1 ≤ i ≤ |RR| (line 18). This is achieved
using the frequency of solution occurrence among objects in
RR. Our intuition is that if oi’s solution is more frequent in
RR, oi is more useful in RR. If oi is cast from a case C, oi’
solution is equal to C’s solution. If oi is cast from a SCAR r,
oi’s solution is the solution in r’s consequent. Let S be the set
of solutions of objects in RR. Given an object oi ∈ RR, let
Soi

be a set of objects in RR whose solutions are equal to oi’s
solution. Let δ(Soi

) be |Soi
|/ max(Sok

) for all 1 ≤ k ≤ |RR|.
Finally, we enhance oi.usf by including δ(Soi

) as o.usf = o.usf
∗ δ(Soi

). Eventually, RR is returned.
To sum up, USIMSCAR’s output is a collection of particular

objects consisting of both cases and SCARs that have been
evaluated to be relevant to the given target problem. These
objects have their own usefulness quantified using both SK
and AK. The significance of these objects with respect to
improving the retrieval performance is evaluated in Section
VII. Before presenting the evaluation results, in the following,
we demonstrate how USIMSCAR performs with an example
to help to provide a better understanding of its algorithm.

B. Illustration of USIMSCAR With an Example

We illustrate how USIMSCAR produces a retrieval result
RR from the case base shown in Table I. We also show

TABLE III

Three SCARs Extracted From Table I

ID Rule Laplace ⊂soft

r1: {right flank} ∈ pain localiza
& {vomit} ∈ other slight pain
& {38.3, 38.7} ∈ fever &
{yes} ∈ appetite loss & {11,
14, 15} ∈ age → appendicitis
∈ diagnosis

0.95 Patient 1, ...

r2: {right flank} ∈ pain localiza
& {38.5, 38.9} ∈ fever &
{yes} ∈ appetite loss & {10,
13} ∈ age → appendicitis ∈
diagnosis

0.60 Patient 1, ...

r3: {right flank} ∈ pain localiza
& {37.5, 37.9} ∈ fever &
{yes} ∈ appetite loss & {23,
25, 35} ∈ age → gastritis ∈
diagnosis

0.90 Patient 2, ...

how we predict the correct solution from RR for the patient
NP.

For the sake of simplicity, assume that the SCAR mining
algorithm generates the three SCARs shown in Table III from
the case base D. This table is the same as Table II, except
that the heading confidence is replaced with Laplace. Further,
each list under the heading ⊂soft denotes those cases that softly
contain the SCAR at the same row (e.g., Patient 1 softly
contains r1; alternatively, r1 is a soft subset of Patient 1).

Given NP, USIMSCAR performs the following steps using
the SCARs in Table III, assuming that the number of the
most similar cases and SCARs to NP is set equally as 2,
respectively. Also, assume that we only consider four patient
cases in Table I to find similar cases to NP for simplicity.

Step 1: USIMSCAR retrieves the two most similar cases to
NP: SC = {Patient 2, Patient 1}, where simg(NP, Patient 2) =
0.637 and simg(NP, Patient 1) = 0.623.

Step 2: USIMSCAR retrieves the two most similar SCARs
to NP: SS = {r1, r3}, where simg(NP, r1) = 0.722 and simg(NP,
r3) = 0.714.

Step 3: For each case C ∈ SC, USIMSCAR selects its most
relevant SCAR rC ∈ SCARset. With this example, rPatient 2 is
chosen as r3, and rPatient 1 as r1. The usefulness of C with
respect to NP is computed as simg(NP, C) ∗ Laplace(rC). Thus,
usf(NP, Patient 2) = 0.573 and usf(NP, Patient 1) = 0.592.
Finally, C is cast as a generic object o, where o.inst = C and
o.usf = usf(NP, C), and o is stored in RR.

Step 4: For each SCAR r ∈ SS, USIMSCAR computes the
usefulness of r with respect to NP: usf(NP, r1) = 0.686 and
usf(NP, r3) = 0.643. After that, r is also cast as a generic object
o, where o.inst = r and o.usf = usf(NP, r), and o is stored in
RR.

Step 5: Suppose that each object in RR has a field s holding
its solution. RR is then RR = {o1, ..., o4}, where
o1.inst = Patient 1, o1.usf = 0.592, o1.s = appendicitis
o2.inst = Patient 2, o2.usf = 0.573, o2.s = gastritis
o3.inst = r1, o3.usf = 0.686, o3.s = appendicitis
o4.inst = r3, o4.usf = 0.643, o4.s = gastritis.

Thus, SPatient 1 = {Patient1, r1} and SPatient 2 = {Patient 2,
r3}. So, δ(SPatient 1) = 1.0 and δ(SPatient 2) = 1.0. Finally, the
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usefulness of each object in RR is enhanced by multiplying
δ(SPatient 1) or δ(SPatient 2), according to whether its solution is
appendicitis or gastritis. With this scenario, the enhancement
results are the same as the above. Eventually, if we choose
the single most useful object in RR for NP, we choose o3 and
its solution appendicitis is provided to NP. This is correct,
as NP was identified to suffer from a disease appendicitis as
previously mentioned.

As examined, our approach can enhance SBR to find the
correct solution for NP via three schemes. First, a set of similar
cases to NP retrieved can be further utilized with their relevant
SCARs to measure their usefulness with respect to NP. Second,
a set of similar SCARs to NP is discovered, and then their
interestingness along with their similarities are both leveraged
to measure the usefulness of such SCARs. Third, both the
retrieved cases and SCARs are further utilized through the
use of the frequency of solution occurrence witnessed within
themselves to enhance their usefulness.

VII. USIMSCAR Evaluation

We evaluate whether USIMSCAR is an effective retrieval
method that performs successfully by applying it to various
benchmark and real-life datasets in three application domains:
medical diagnosis (MD), IT service management (ITSM),
and product recommendation (PR) domains. To show the
superiority of USIMSCAR’s performance, we compare it with
the performance of several retrieval methods adopting SBR.
Further, we compare it with one well-known CBR retrieval
method that uses a quality metric combining diversity and
similarity [5]. This aims to provide a more general spectrum of
USIMSCAR’s performance by comparing the retrieval method
designed to enhance SBR that uses the diversity concept in
conjunction with similarity.

A. Evaluation Methodology

For the MD domain, USIMSCAR is applied to estimate the
correct diagnosis for illness associated with symptoms of a
given patient. For the ITSM domain, USIMSCAR is used to
predict the correct IT support group workgroup for a given IT
incident problem. A typical IT support organization is struc-
tured as a complex network of workgroups, each comprising
of a set of skilled technicians dealing with problems presented
by customers. Generally, assigning presented problems to
appropriate workgroups is largely manual, thereby error-prone
and leading to multiple bouncing of the problem within various
workgroups [9]. For the PR domain, USIMSCAR is applied
to predict the correct rating that a given user will be likely to
rate toward a product presented by the user.

1) Datasets Used: Table IV shows a summary of all
datasets used in our experiments. For the MD domain, we
use seven medical datasets, where six are found in UCI
ML repository.4 The other one is a real-life medical dataset
(NHSG) obtained from the U.K. National Health Service
(Grampian) Health and Safety. In all the datasets, the problem
part of each case denotes a set of symptoms or situations of

4http://www.ics.uci.edu/˜mlearn/MLRepository.html

a patient, and the solution part represents the corresponding
diagnosis class or care stage. For each dataset, we choose the
training and testing data using tenfold cross validation (CV)
[29].

For the ITSM domain, we use a real-life incident dataset
(IMData) obtained from an installation of HP Service Man-
ager.5 IMData consists of 6514 incident cases resolved by six
workgroups in 2007, where 5211 (80%) cases were chosen as
training data and the remaining 1303 (20%) cases as testing
data. The problem part of each case is described using three at-
tributes: 1) incident category—the main criterion for classify-
ing a given IT incident problem (e.g., account and application
error); 2) incident topic—specifying detailed entries specific
to the incident category (e.g., printing and database); and
3) incident description—describing a customer’s perception
about the problem (e.g., cannot print from Bizflow). The
solution part is labeled as one of the six workgroups WG1,
..., WG6.

For the PR domain, we use a large movie dataset, Yahoo!
Webscope R4 Movie dataset6 (simply R4). The problem part
of each case is described by the combined information of a
user and a movie using 11 complicated attributes, and the
solution part denotes a rating assigned to the movie by the
user. Each user is described by two attributes: birthyear (e.g.,
1981) and gender (e.g., m, f). Each movie is represented by
nine attributes—title (text), mpaa rating (e.g., PG) (discrete),
genres (set-valued), directors (set-valued), actors (set-valued),
the average of the critic reviews of the movie (numeric),
rating to the movie from the Movie Mom website (numeric),
gnpp (the global nonpersonalized popularity of the movie)
(numeric), and the average rating of the movie in the training
data (numeric). Before our experiments, we preprocessed R4
by removing cases that have any attributes with missing
values and eliminating redundant attributes (e.g., actors are
represented using both actor id and name, thus including only
name). Finally, R4 consists of training data having 2229 cases
rated by 697 users for 233 movies and testing data having
1754 instances rated by 620 users for 246 movies. The rating
of each case is scaled from 1 (lowest) to 5 (highest). Using
R4, our target task is to predict a rating that the user will be
likely to rate as liked or disliked using the training data for
each instance in the testing data. If a predicted rating is greater
or equal to 4, we classify it as liked, and disliked otherwise.

2) Compared Retrieval Methods: To identify whether
USIMSCAR is an effective retrieval strategy, we choose six
retrieval methods for comparison purposes. Among them, five
are classified into the SBR strategy, and the other one is a
retrieval method using a metric combining the concepts of
similarity and diversity.

1) KNN: a k-NN implementation using LinearNNSearch
(via the Euclidean distance) available in Weka.7.

2) KNN-CFS: an extension of KNN with an FS approach
CfsSubsetEval available in Weka. CfsSubsetEval as-
sesses the predictive ability of each problem feature

5http://www.hp.com/software
6http://research.yahoo.com
7http://www.cs.waikato.ac.nz/ml/weka/
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TABLE IV

Datasets Used in Our Experiments

Experiment Dataset Case No. Attr No. Problem Part Solution Part Experiment
Domain Numeric Discrete Set-Valued Text Solution Class no. Approach

MD Breast Cancer (BC) 286 9 9 2
Breast Cancer Wins (BCW) 683 9 9 2
Breast Tissue (BT) 106 9 9 6 Tenfold
Pima Indian Diabetes (PID) 768 8 8 2 CV
StatLog Heart Disease (SHD) 270 13 7 6 2
New Thyroid (THY) 215 5 5 3
NHSG 1085 12 5

ITSM IMData (training data) 5211 3 2 1 6 The holdout method
IMData (testing data) 1303 3 2 1 6 (80%: training, 20%: testing)

PR R4 (training data) 2229 11 5 2 3 1 2 Given training/testing data
R4 (testing data) 1754 11 5 2 3 1 2 from Yahoo! Research

individually, and then chooses a set of features highly
correlated with the solution.

3) KNN-LVF: an extension of KNN with an FS approach
ConsistencySubsetEval available in Weka. It evaluates
problem feature sets by the degree of consistency in
solution values when stored cases are projected onto the
set.

4) KNN-IG: an extension of KNN with a FW approach
InfoGainAttributeEval available in Weka. It measures
weighting of problem features by measuring their in-
formation gain with respect to the solution.

5) KNN-CS: an extension of KNN with a FW approach
ChiSquaredAttributeEval available in Weka. It evaluates
problem features by computing the chi-square statistic
with respect to the solution.

6) SIM-DIV: a retrieval method using the quality metric
combining diversity and similarity. The quality of a case
is proportional to the similarity between the case and a
target problem, and to the diversity of the relative to
those cases selected by the similarity [5]. This method
is available in jCOLIBRI.8

We note that for the IMData/R4 datasets containing text
type attributes, we compare USIMSCAR with the following
only: KNN, KNN-IG, KNN-CS, and SIM-DIV. KNN-CFS
and KNN-LVF are excluded, since CfsSubsetEval and Con-
sistencySubsetEval cannot handle text values when finding a
subset of relevant attributes. For example, suppose two cases
contained in IMData. The first case’s problem is formed as
{request, print issue, I cannot print in Bizflow.} and the
solution as WG1. The second case’s problem is represented as
{request, print issue, user cannot print from any printer.} and
the solution as WG1. In this scenario, it is hard to measure
what features in values of the third attribute (i.e., incident
description) is correlated (or relevant) to the solution since it
is described in free text.

Meanwhile, it is possible for the FW methods to compute
weights of text attributes of cases via this procedure. First,
using the OpenNLP toolkit,9 we extracted a set of terms from
a value of the given text attribute. The attribute is then seen as

8http://gaia.fdi.ucm.es/research/colibri/jcolibri
9http://opennlp.apache.org/

a set-valued attribute whose values are the set of such terms.
Second, we convert the set into k binary attributes, where k is
the distinct number of terms in the set. Each of these attributes
has a value of 1 for every occurrence of the corresponding
kth value of the discrete attribute, and a value of 0 for all
other values. These new synthetic attributes are then treated
as discrete attributes in a normal manner. Thus, the weights of
the individual binary attributes are obtained by applying FW
on them. Finally, as a weight of the text attribute, we average
the weights of the whole binary attributes.

3) Evaluation Metrics: The effectiveness of USIMSCAR
and compared methods is measured using the following
criterion: how well they perform the prediction of correct
solutions for target problems. A simple measure for assessing
this performance is to measure the accuracy of them when
performing a validation process. Each case in given testing
data is used as input to each retrieval method and the output,
the predicted solution, is compared to the known solution
of the case. In this context, accuracy can be measured via
computing the proportion of correctly classified instances over
all the tested instances. However, it does not take into account
the cost of making wrong decisions. That is, accuracy can
be misleading when the testing data contain a disproportional
number of cases with a certain solution class. Thus, we also
use F -measure (FM) to overcome this problem. It is defined
as the harmonic mean between precision (P) and recall (R):
2PR
P+R , where P means the proportion of the instances, which
truly have a solution s, among all those predicted as a solution
s. R indicates the proportion of the instances, predicted as a
solution s, among all those instances having s. A high FM
value indicates that both P and R are reasonably high.

4) SK Used in the Retrieval Methods: The SK used in
USIMSCAR and compared methods are all encoded via the
global–local principle outlined in Section IV-A. That is, the
similarity simg(Q, C) between a problem Q and a case C is
defined as10

simg(Q, C) =

∑n

i=1 wi · siml(qi, ci)∑n

i=1 wi

. (4)

10The notations used in this equation were explained via (1) in Section II.
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TABLE V

Used Local Similarity Measures

Type Local Similarity Measures

Numeric 1 − |qi−ci|
Amax

i −Amin
i

[see (1)]

Discrete 1, if qi = ci, and 0, otherwise.
Set-valued The Jaccard coefficient.

Text Once extracting two sets of terms from qi and ci

using the OpenNLP toolkit, we compute the Jaccard
coefficient between them.

For both KNN-IG and KNN-CS, the value of wi is computed
using FW, while it is set to 1 equally for the other compared
methods and USIMSCAR. Table V shows the used local
similarities for numeric, discrete, set-valued, and text types,
where Ai denotes an attribute. The similarity simg is also used
for USIMSCAR to find the most similar SCARs to a target
problem (see Step 2 of Algorithm 1).

5) Configuration for Application Tasks: As mentioned,
our application tasks are centered on estimating the correct
diagnosis, workgroups, and movie ratings for given illness
symptoms, IT incident problems, and user/movie information
in the three domains tested, respectively.

From a context of CBR systems, given a new problem,
for a retrieval method, such tasks can be carried out by two
phases. The first phase is to retrieve a set of relevant cases to
the problem through the retrieval process. The second phase
is to adapt the solutions of the retrieved cases to generate
the correct solution for the problem. This process is called
case adaptation, and its process is well-known highly domain-
specific and complex in practice.11 Thus, as a simple scheme
of case adaptation, we use a ranking scheme that ranks the
solutions of retrieved cases. Here, the ranking is used to
generate a form of adaptation knowledge by learning the
knowledge already inside the retrieved cases. A well-known
approach for the ranking is voting. Thus, we choose two well-
known voting approaches, majority voting (MV) and distance
weighted voting (WV), that have been widely used in the CBR
community.

In a context of USIMSCAR, to apply MV, a vote of an
object oi in a retrieval result RR (see Algorithm 2) receives
an equal weight. The vote toward a solution Y is computed
as

∑|RR|
i=1 θ(Y, Yi)/|RR|, where θ(Y, Yi) returns 1 if Y and oi’s

solution Yi match, and 0 otherwise. For SBR, MV can also
be applied to the most similar cases retrieved to a target
problem by the same principle. In WV, more competent objects
are assigned more weights. Objects in RR get to vote on a
solution, with votes weighted by their usefulness with respect
to the target problem. The vote of oi toward a solution Y

is given as (
∑|RR|

i=1 θ(Y, Yi) ∗ oi.usf)/
∑|RR|

i=1 oi.usf. As observed,
the vote toward Y is further multiplied by the usefulness of
oi (i.e., oi.usf). For SBR, WV can also be applied with the
same principle except that the usefulness is measured by the
similarity to the target problem.

Since the outcomes of the first phase can be influenced by
ksc (the number of the retrieved similar cases), we need to test

11As case adaption is beyond the scope of this paper, readers are referred
to a related survey [30].

TABLE VI

Setting Parameters for USIMSCAR

Parameters MD Domain ITSM Domain PR Domain
minsupp 0.1 (10%) 0.02 (2%) 0.1 (10%)
minsim 0.95 (95%) 0.55 (55%) 0.66 (66%)
minint 0.7 (70%) 0.55 (55%) 0.65 (65%)
minitemsize 0.5N 1.0N 0.5N

with different values for ksc. For this, we selected odd values
in [1, 15] to avoid tied votes (e.g., 1, 3, ..., 15). The maximum
value 15 is chosen, since we observed that increasing values
for ksc beyond 15 could not change the results. From this
range, the results of each retrieval method for the tasks, with
the best choice of a value for ksc, are used for comparison
purposes. Also, by the same observation, a value for kss used
in Algorithm 2 is chosen from [1, 15].

6) Setting Parameters for USIMSCAR: For SCAR mining,
we need to set values for some parameters. A summary of
these values used in the experiments is provided in Table VI.

The values are found by the following criteria. A value for
minitemsize is set to 0.5N, if N ≥ 5, and 1 otherwise, where
N is the number of attributes of the cases being considered. A
value for minsim is set to the top quartile of similarity scores
between instances in the testing data and cases in the training
data. The value 0.95 in the MD domain is made by assigning
the average of the top-quartile scores from all the seven
datasets in the domain. We set values for minsupp and minint
by the following scheme. First, a value for minsupp is initially
set to 0.1 with a value 0.5 for minint. Then, SCAR mining
is performed to generate a set of SCARs. Second, applying
the mining continues by increasing a value for minsupp with
0.01 until it reaches up to 0.2 (the maximum for minsupp we
defined). Third, for each value for minsupp, we also continue
testing with a value for minint by increasing it with 0.05 until
it reaches up to 0.7 (the maximum for minint we defined).
Using different sets of the SCARs produced with varied values
for minsupp and minint, we measure the performance of
USIMSCAR and then choose the values leading to the best
performance. Regarding minsupp for IMData, we note that
minsupp is set to 0.02. Once minsupp is set to 0.1, we found
that very few SCARs are generated (< 50). Thus, we initially
set the minsupp as a lower value 0.01 and then apply the
aforementioned process.

B. Results and Analysis

We first report the number of SCARs generated via SCAR
mining in Table VII. For the MD datasets, we use the averaged
number of SCARs generated from the use of tenfold CV.
Interestingly, the number of SCARs from BT is the highest
as 6010, although the number of its instances is the lowest
as 106, as shown in Table IV. The reason is found that some
items in BT relatively appear frequently compared to the other
datasets. We also find that the numbers of SCARs for two large
datasets (IMData and R4) correspond to about 30% of the total
number of the cases in the training data.

We now discuss experimental results for each experimental
domain. First, using the MD datasets, results using MV are
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Fig. 1. Results using MV in the MD domain. (a) Accuracy comparison (%). (b) FM comparison (%).

Fig. 2. Results using WV in the MD domain. (a) Accuracy comparison (%). (b) FM comparison (%).

TABLE VII

Number of Generated SCARs

Experimental Domain Dataset SCARs No.
BC 228

BCW 153
BT 6010

MD PID 524
SHD 676
THY 1073

NHSG 673
ITSM IMData 1568

PR R4 747

presented in Fig. 1. Through the figure, we observe that
USIMSCAR outperforms the other methods in 39 out of 42
comparisons in terms of both accuracy (ACC) and FM. Only
with three comparison occasions for ACC and FM (i.e., KNN-
CFS on BC/PID and KNN-CS on SHD in terms of ACC, and
KNN on BT, KNN-CFS on PID, and KNN-IG on SHD in
terms of FM), USIMSCAR achieves the second best. It shows
that USIMSCAR with MV achieves better performance than
all compared methods in 92.9% of the comparison cases in
terms of the two metrics. The comparison results using WV
is found in Fig. 2. Through the results, we now find that
USIMSCAR substantially outperforms all compared methods
on all the seven datasets in all 42 comparisons in terms of
both ACC and FM.

To establish whether the improvements of USIMSCAR
using MV and WV against the compared methods are statisti-
cally significant, we carried out statistical tests. A common
approach for measuring a significant test for a difference

TABLE VIII

Statistical Test Results: USIMSCAR Versus Other Methods

Domain Dataset KNN KNN-CFS KNN-LVF KNN-IG KNN-CS SIM-DIV

MV WV MV WV MV WV MV WV MV WV MV WV

BC ◦ ◦ ◦ ◦ ◦
BCW

BT •◦ ◦ ◦
MD PID •◦ •◦ •◦ •◦ •◦ •◦

SHD •◦ •◦ •◦ •◦ •◦ •◦
THY

NHSG •◦ •◦ •◦ •◦ •◦ •◦ •◦ •◦ •◦ •◦ •◦ •
ITSM IMData •◦ •◦ – – – – •◦ •◦ •◦ •◦ •◦ •◦

PR R4 • • – – – – • • • • • •

between two proportions is the Z-test [31]. We performed
statistical tests using the Z-test at 95% confidence. The
statistical test results are presented in Table VIII, where •
and ◦ indicate that the improvement of USIMSCAR turns
out to be statistically significant in terms of ACC and FM,
respectively, over the corresponding compared method. Using
MV, we find that USIMSCAR’s improvements over all the
compared methods are significant in 19% comparisons (8 out
of 42 comparisons) in terms of both ACC and FM. Using WV,
USIMSCAR’s improvements are much greater, i.e., 50% and
62% of comparisons are significant in terms of ACC and FM,
respectively.

Furthermore, in order to identify whether USIMSCAR’s
overall performance is significant over the compared methods
using all the seven datasets in the MD domain, we performed
the paired t-test [31] at 95% confidence. This test is suitable
for evaluating the significance of a difference between means



484 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 44, NO. 4, APRIL 2014

Fig. 3. Results in the ITMS and PR domains. (a) Using MV (with IMData). (b) Using WV (with IMData). (c) Using MV (with R4). (d) Using WV
(with R4).

TABLE IX

USIMSCAR’s Overall Performance in the MD Domain

Methods
MV WV

ACC FM ACC FM
USIMSCAR 82.86 80.27 86.84 84.94

KNN 81.19 77.29 81.06 • 77.15 ◦
KNN-CFS 80.75 76.58 80.43 • 76.17 ◦
KNN-LVF 80.64 • 76.47 80.52 • 78.44 ◦
KNN-IG 81.28 76.65 80.88 • 76.14 ◦
KNN-CS 80.99 • 77.08 81.19 • 76.84 ◦
SIM-DIV 81.01 79.79 81.10 • 79.87

of two populations. The test results are shown in Table IX,
where each figure denotes the mean of the ACC or FM results
of a method against each of the datasets.

Through the tests, we discover that USIMSCAR shows
significant improvements over two methods in terms of ACC
with MV, while its improvements are much greater with WV,
i.e., outperforming all the compared methods in ACC, and
five methods in FM. We note that the lack of significant
improvements of USIMSCAR does not necessarily mean that
there is no difference between them. As Keen [32] indicated,
such improvements still can be important if these occur
repeatedly in many contexts. Thus, our comparison results may
be still valuable, since these provide evidence about a better
performance of USIMSCAR over SBR using a number of
datasets. Through the aforementioned results, we have shown
that USIMSCAR has a greater ability compared to SBR and
SIM-DIV in achieving the retrieval process in CBR.

Now, we analyze experimental results of USIMSCAR and
the four compared methods for the ITSM domain. Through
Fig. 3(a), we find that USIMSCAR substantially outperforms
the compared methods in the range of 6.9% to 8.1% in terms

of ACC and also the range of 7.0% to 8.2% in terms of
FM. As observed in Table VIII, USIMSCAR is determined to
attain statistically significant improvements over the compared
methods in terms of both metrics. Fig. 3(b) shows the com-
parison results with the use of WV. As observed, USIMSCAR
greatly outperforms the compared methods in the range 9.5%
and 10.2% in terms of ACC, and in the range of 9.2% to
11.2% in terms of FM. According to the Z-test, we find that
USIMSCAR significantly outperforms the methods in terms
of both metrics as shown in Table VIII.

Next, we focus on experimental results using the R4 dataset
in the PR domain. The results are given in Fig. 3(c) and (d).
As observed in Fig. 3(c), USIMSCAR outperforms all the
four methods, ranging from 3.2% to 4.6% in terms of ACC,
and 0.77% to 2.5% in terms of FM. These improvements
are deemed significant as seen in Table VIII in terms of
ACC. Regarding WV, as observed in Fig. 3(d), USIMSCAR
significantly outperforms the compared methods, ranging from
3.57% to 4.08% in terms of ACC, and 1.21% to 2.45% in terms
of FM. We find that these improvements are also significant
in terms of ACC as shown in Table VIII.

A noticeable observation in Fig. 3(c) and (d) is that the ACC
results of the methods are relatively higher than their corre-
sponding FM results. The differences are identified as from
9.1% to 12.5%. We find that such differences occurred due to
the much smaller number of instances (17.7%) belonging to
the solution (disliked) (ratings 1–3), compared to the solution
(liked) (ratings 4 and 5). Such lower associations between
disliked and the instances entail that the majority of solution
prediction tend to be highly to liked, leading to the lower FM
results for disliked. Such lower results influence the low mean
FM results for both liked and disliked.
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Fig. 4. USIMSCAR (MV) versus USIMSCAR (WV). (a) ACC comparison (%). (b) FM comparison (%).

Through the evaluation results in the ITSM and PR domains,
we find that using both MV and WV, USIMSCAR significantly
outperforms all the four compared methods for ACC. With
results for FM, USIMSCAR’s improvements are significant in
the ITSM domain. These results reinforce that USIMSCAR
has a powerful ability in achieving the retrieval process, in
addition to the results in the MD domain.

The following examinations can be conclusively found in
our paper.

1) Our all experimental results in the three domains (i.e.,
MD, ITSM, and PR) show that USIMSCAR significantly
outperforms the compared SBR approaches in 36.7%
and 38.9% comparisons in terms of ACC and FM,
respectively. Against SIM-DIV, USIMSCAR’s statistical
improvement ratio reaches 44.4% and 22.2% for ACC
and FM, respectively. This can provide an evidence
that USIMSCAR is a powerful and effective retrieval
strategy.

2) In particular, the real strength of our evaluation lies in
the fact that USIMSCAR outperforms SBR and SIM-
DIV for predicting solutions against different forms
of problems described by various types (i.e., numeric,
discrete, set-valued, and text) across multiple domains
using both real-world (e.g., NHSG, IMData, and R4)
and benchmark data.

3) Furthermore, we discovered that USIMSCAR using WV
consistently leads to better performance over using MV
in terms of both ACC and FM. Their comparison results
are shown in Fig. 4. According to the paired t-test
at 95% confidence, we find that the improvement of
USIMSCAR using WV turns to be significant. This
finding implies that it is more significant to utilize
the quantified usefulness of objects in the retrieval set
of USIMSCAR, rather than merely using distribution
information about the solutions associated with such
objects.

4) The results shown in Fig. 4 further establishes the
validity of the primary motivation of this paper that
a combination of SK and AK will lead to enhancing
SBR. Conclusively, this finding provides the evidence of
the validity and soundness of our proposed USIMSCAR
approach for retrieval in CBR.

C. Discussion

The objective of this paper is to design a new retrieval strat-
egy to enhance the typically used retrieval strategy SBR. As
shown by the evaluation results, USIMSCAR holds a potential
to be used for retrieving relevant cases as well as evidently
promising rules in practice and to subsequently improve the
retrieval performance. A practical application of USIMSCAR
may be to enhance the retrieval strategy implemented in
currently available CBR systems that are publicly available
(e.g., jCOLIBRI, myCBR12).

USIMSCAR may be usefully leveraged in domains (e.g.,
medical domains) where case retrieval is forming greater part
of the overall CBR systems than case adaptation to present
solutions to users. For example, in medical applications, it is
almost impossible to generate adaptation rules by considering
all possible important differences between the current and
former similar cases [15]. Thus, case retrieval tends to be more
interested in making optimal solutions in such applications.
USIMSCAR may be best fitted to needs for such applications.

In practice, USIMSCAR is possibly used for other CBR
applications, as long as a dataset in a given application can
be represented using attribute–values pairs. USIMSCAR is
not affected by the types of each attribute—whether these
are primitive (e.g., numeric, discrete), more complex (e.g.,
set-valued, text) or semantic (e.g., concepts in an ontol-
ogy), as long as a similarity metric is provided for the
attribute. Since many similarity metrics for different attribute
types have been actively developed in IR, we may easily
integrate them into USIMSCAR depending upon the ap-
plication context. For example, those similarity metrics for
various attribute types provided from the jCOLIBRI and
Weka toolkits may be good potentials to be leveraged in
USIMSCAR.

We recall that SCAR mining and USIMSCAR work with
four user-specified parameters: minitemsize, minsim, minsupp,
and minint. In the DM community, choosing optimal values
for minsupp and minconf (the similar concept to minint)
is still challenging, since these depend on the data. Thus,
many DM applications still choose such values in ad hoc
manners. Although, in our experiments, we also chose values

12http://mycbr-project.net/
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for the aforementioned parameters in ad hoc manners, we
would suggest one approach based on machine learning as
follows. First, from a randomly selected training dataset from
a given case base, we could define the lowest and highest
boundaries of allowed values for each parameter. Second,
we could then start with a low value to higher gradually or
vice versa. After that, we can measure the performance of
USIMSCAR. Third, a regression model could be learned to
identify how each combination of a set of particular values
across the parameters is correlated to a certain performance
degree of USIMSCAR. The model could be used to catch
a good picture on how to optimally combine values for the
four parameters. We leave the validation of this idea as future
work.

Finally, we point out that AK is different from adaptation
knowledge leveraged for the solution transformation of re-
trieved cases in the following aspects.

1) Goal: while adaptation knowledge generally concerns
substituting or transforming specific solutions of re-
trieved cases to suit new problems, AK concerns finding
the general patterns of evident associations between
known problems and solutions from the case base.

2) Target Cases: whereas adaptation knowledge is generally
required to use for retrieved cases, AK is used to retrieve
relevant cases and rules with respect to new problems.

3) Knowledge Characteristic: adaptation knowledge is
highly domain specific so that it is difficult to provide a
general guideline for formulating this knowledge.

On the other hand, AK can be easily built from the case base
and thus is case specific. However, AK may be possibly used
to enhance adaptation knowledge or be integrated with it for
the better use of adaptation rules.

VIII. Conclusion and Future Work

This paper presented a novel strategy USIMSCAR that
can be effectively used for retrieval in CBR. The paper
made two main contributions. First, we proposed a unique
approach for extracting and representing AK from a given
case base. We proposed that this knowledge is encoded via
SCARs using ARM. Second, we proposed novel strategies
for quantifying the usefulness of cases as well as rules with
respect to the target problem by leveraging both SK and AK.
This quantification is used in USIMSCAR to determine the
most relevant cases and rules with respect to the problem.
This idea of leveraging the combined knowledge during CBR
retrieval clearly distinguishes USIMSCAR from SBR as well
as existing retrieval strategies developed in the CBR research.
We showed the significance of USIMSCAR over SBR and a
retrieval strategy adopting the similarity and diversity metrics
through extensive experiments in various CBR domains.

As future work, USIMSCAR could also be extended for
cases with complex structures such as object-oriented, hier-
archical, and semantic web-based cases [2], [33]. For USIM-
SCAR to run with such cases, two issues must be addressed:
1) how to define similarity measures for the cases; and 2) how
to formalize AK from the cases. For the former, one may use
the similarity approaches remarked in [34] for these cases.

For the latter, one could attempt to leverage the algorithms
proposed in [33], [35], and [36], according to the given case
representations, to integrate the soft-matching criterion for
SCAR mining. Also, research on how to adapt USIMSCAR
for cases with more than one solution could be further studied.
In addition, the performance of USIMSCAR in other metrics
(i.e., computation time and memory used) will be investigated
further.
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[23] R. Agrawal, T. Imieliński, and A. Swami, “Mining association rules
between sets of items in large databases,” ACM SIGMOD Rec., vol. 22,
no. 2, pp. 207–216, Jun. 1993.

[24] B. Liu, W. Hsu, and Y. Ma, “Integrating classification and association
rule mining,” in Knowledge Discovery and Data Mining. Berlin, Ger-
many: Springer, 1998, pp. 80–86.

[25] U. Y. Nahm and R. J. Mooney, “Using soft-matching mined rules to
improve information extraction,” in Proc. AAAI Workshop Adaptive Text
Extract. Mining, 2004, pp. 27–32.

[26] L. Geng and H. J. Hamilton, “Interestingness measures for data mining:
A survey,” ACM Comput. Surv., vol. 38, no. 3, Article 9, Sep. 2006.

[27] R. J. Bayardo, Jr., and R. Agrawal, “Mining the most interesting rules,”
in Proc. 5th ACM SIGKDD Int. Conf. Knowl. Discov. Data Mining,
1999, pp. 145–154.

[28] T. Hu, S. Y. Sung, H. Xiong, and Q. Fu, “Discovery of maximum length
frequent itemsets,” Inf. Sci., vol. 178, pp. 69–87, Jan. 2008.

[29] R. Kohavi, “A study of cross-validation and bootstrap for accuracy
estimation and model selection,” in Proc. 14th Int. Joint Conf. Artif.
Intell., Aug. 1995, pp. 1137–1143.

[30] R. Mitra and J. Basak, “Methods of case adaptation: A survey: Research
articles,” Int. J. Intell. Syst., vol. 20, no. 6, pp. 627–645, Jun. 2005.

[31] R. C. Sprinthall, Basic Statistical Analysis. Boston, MA, USA: Allyn &
Bacon, 2003.

[32] E. M. Keen, “Presenting results of experimental retrieval comparisons,”
Inf. Process. Manage., vol. 28, no. 4, pp. 491–502, 1992.

[33] V. Nebot and R. Berlanga, “Mining association rules from semantic web
data,” in Proc. 23rd Int. Conf. Ind. Eng. Appl. Appl. Intell. Syst., 2010,
pp. 504–513.

[34] S.-H. Cha, “Comprehensive survey on distance/similarity measures
between probability density functions,” Int. J. Math. Models Methods
Appl. Sci., vol. 1, no. 4, pp. 300–307, 2007.

[35] P. Kuba and L. Popelinsky, “Mining frequent patterns in object-
oriented data,” in Proc. 2nd Int. Ws Mining Graphs Trees Sequences
(ECML/PKDD), Pisa, 2004, pp. 15–25.

[36] P. Gautam and K. R. Pardasani, “Algorithm for efficient multilevel
association rule mining,” Int. J. Comput. Sci. Eng., vol. 2, no. 5,
pp. 1700–1704, 2010.

Yong-Bin Kang received the M.Sc. degree in com-
puter science from Pusan National University, Bu-
san, Korea, in 1998, and the Ph.D. degree in in-
formation technology from Monash University, Mel-
bourne, Australia, in 2011.

He is currently a Research Fellow with the Fac-
ulty of Information Technology, Monash University.
He is currently involved in research projects that
include developing innovative models for predicting
the performance of semantic reasoners inferencing
large/hard ontologies, effective models for quanti-

fying research expertise of experts in different domains, and knowledge
models for supporting emergency management for mass gatherings. Prior to
his Ph.D., he has been for around 10 years at various research positions
in IT development companies and premier research organizations in Korea
such as Electronics and Telecommunications Research Institute from 1998
and 2007. During this time, he conducted high-quality research, contributing
to a number of conference/journal papers in various areas, such as human–
computer interface, virtual reality, and location-based tracking, as well as
developed a number of real-world systems for different application domains
such as traffic management, warehouse management, insurance, document
management, and text recognition systems. His current research is focused
highly on interdisciplinary research based on machine learning, data mining,
semantic web, and bioinformatics.

Shonali Krishnaswamy received the Bachelor of
Science degree in computer science from the Uni-
versity of Madras, Chennai, India, in 1996, and
the Master of Computing degree and the Ph.D.
degree in computer science from Monash University,
Australia, in 1998 and 2003, respectively.

She is currently the Head of the Data Analytics
Department, Institute for Infocomm Research (I2R),
A*STAR, Singapore. She was the Director of the
Centre for Distributed Systems and Software Engi-
neering, Faculty of Information Technology, Monash

University, Melbourne, Australia, where she is currently an Associate Profes-
sor. She has contributed to around 200 research papers. Her current research
interests include the areas of mobile, ubiquitous, distributed data mining, and
data stream mining. She is increasingly interested in mobile crowd sensing,
mobile user analytics, and mobile activity recognition.

Prof. Krishnaswamy was the recipient of the Monash University Vice-
Chancellor’s Award for Excellence in Research by an Early Career Researcher
2008, the IBM Innovation Award (unstructure information management ar-
chitecture), the Faculty of Information Technology Early Career Researcher
Award, and an Australian Post-Doctoral Fellowship from the Australian
Research Council.

Arkady Zaslavsky received the M.Sc. degree in
applied mathematics (majoring in computer science)
from Tbilisi State University, Tbilisi, Georgia, in
1976, and the Ph.D. degree in computer science
from the Moscow Institute for Control Sciences,
USSR Academy of Sciences, Moscow, Russia, in
1987.

He is currently the Science Leader of the semantic
data management science area in Information En-
gineering Laboratory, Information and Communica-
tion Technologies Centre, Commonwealth Scientific

and Industrial Research Organisation (CSIRO), Melbourne, Australia. He
is also an Adjunct Professor at Australian National University, a Research
Professor at La Trobe University, and an Adjunct Professor at the University
of New South Wales. He is currently involved and is leading a number
of European and national research projects. Before joining CSIRO in July
2011, he was a Chaired Professor in pervasive and mobile computing at the
Lulea University of Technology, Lulea, Sweden, where he was involved in
a number of European research projects, collaborative projects with Ericsson
Research, Ph.D. supervision, and postgraduate education. Between 1992 and
2008, he was a full-time Academic Staff Member at Monash University,
Melbourne, Australia. He made internationally recognized contribution in
the area of disconnected transaction management and replication in mobile
computing environments, context-awareness, as well as in mobile agents. He
made significant internationally recognized contributions in the areas of data
stream mining on mobile devices, adaptive mobile computing systems, ad
hoc mobile networks, efficiency and reliability of mobile computing systems,
mobile agents, and mobile file systems. Before coming to Australia in 1991, he
was in various research positions at industrial research and development labs
as well as at the Institute for Computational Mathematics, Georgian Academy
of Sciences, where he led a systems software research laboratory. He has
published more than 300 research publications throughout his professional
career and supervised to completion more than 30 Ph.D. students.

Dr. Zaslavsky is a Senior Member of the Association for Computing Ma-
chinery, and a member of the IEEE Computer and Communication Societies.


