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Abstract—Taxonomy learning is an important task for knowledge acquisition, sharing, and classification as well as application

development and utilization in various domains. To reduce human effort to build a taxonomy from scratch and improve the quality of

the learned taxonomy, we propose a new taxonomy learning approach, named TaxoFinder. TaxoFinder takes three steps to

automatically build a taxonomy. First, it identifies domain-specific concepts from a domain text corpus. Second, it builds a graph

representing how such concepts are associated together based on their co-occurrences. As the key method in TaxoFinder, we

propose a method for measuring associative strengths among the concepts, which quantify how strongly they are associated in the

graph, using similarities between sentences and spatial distances between sentences. Lastly, TaxoFinder induces a taxonomy from

the graph using a graph analytic algorithm. TaxoFinder aims to build a taxonomy in such a way that it maximizes the overall

associative strengths among the concepts in the graph to build a taxonomy. We evaluate TaxoFinder using gold-standard evaluation

on three different domains: emergency management for mass gatherings, autism research, and disease domains. In our evaluation,

we compare TaxoFinder with a state-of-the-art subsumption method and show that TaxoFinder is an effective approach significantly

outperforming the subsumption method.

Index Terms—Taxonomy learning, ontology learning, concept taxonomy, concept graph

Ç

1 INTRODUCTION

TAXONOMIES are the key to developing successful appli-
cations in a domain, such as information retrieval (IR),

knowledge searching and classification [1], [2]. In particular,
considering the ever-growing amount of text digital data
per year, taxonomy learning from text is a primary research
area for developing such applications nowadays [2]. In a
given domain, the goal of taxonomy learning is to automati-
cally or semi-automatically build a taxonomy by identifying
domain-specific concepts (hereafter, we refer to it as concepts)
and their taxonomic relations from the domain text corpus,
with other relevant knowledge if it is available.

An important nature of a taxonomy is that it enables
representing highly related concepts together, and the path
between two concepts that reflect how these are semantically
related in the domain. A taxonomy is often referred to as
the ‘backbone of an ontology’ built using the most important
‘is-a’ relationship [2]. Due to this link, taxonomy learning is
sometimes regarded as the prerequisite step for ontology
learning that aims to extract concepts, relations and occa-
sional axioms about the concepts to build an ontology [2].

Manually building a taxonomy poses a great challenge
that requires a huge amount of time and effort of humans.
Taxonomy learning uses methods developed in the fields of
natural language processing (NLP), information retrieval
and machine learning (ML) in an attempt to reduce the
human effort and build a high quality taxonomy [2]. Most

existing approaches use pattern-based [3], [4], clustering [5],
[6], statistical [2], [7], and graph-based approaches [8], [9] to
build a taxonomy from extracted concepts.

However, the nature of ‘context’ surrounding the con-
cepts and its actual impact have little been studied for tax-
onomy learning. This motivates us to thoroughly analyze
the statistical and semantic relationships between the con-
cepts, considering their contexts, to build a taxonomy. As a
context of a given concept, in this work, we use the sentence
encompassing the concept, as a sentence is generally seen as
a linguistic unit consisting of words that are meaningfully
linked together.

This paper proposes a graph-based unsupervised app-
roach, named TaxoFinder, for taxonomy learning that auto-
matically builds a taxonomy from a semantic graph, named
CGraph, of concepts modelled from a target corpus. First, we
extract concepts from the corpus using a concept extrac-
tor [10]. Second, based on the co-occurrences of the concepts in
a sliding window, which is the set of consecutive (or sequen-
tial) sentences in each document from the corpus, we build
an undirected graph, CGraph. In the CGraph, a node is a
concept and an edge is created if two concepts co-occur in a
sliding window thus making an association between them.
From the CGraph, we measure the associative strength
between two concepts by leveraging the sentence informa-
tion that the concepts appear in the corpus. Lastly, we induce
a taxonomy from the CGraph by applying a maximum span-
ning tree (MST) algorithm [11].

This paper makes two main contributions: First, we pro-
pose to build a CGraph reflecting semantic associations and
associative strengths of concepts from a text corpus. Using
an MST algorithm, we show how to induce a taxonomy
from the graph. Second, we propose a method for combin-
ing the following three knowledge components to quantify
the associative strengths between two concepts in a CGraph:
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(1) their co-occurrences in the corpus, (2) the spatial proxim-
ity (i.e. distance) and (3) semantic similarity between the
sentences where those concepts appear in the corpus.
The intuition behind is that incorporating such sentence
information can be useful to measure the influences of
contexts surrounding the concepts for measuring the
associative strengths among concepts.

We evaluate TaxoFinder using gold-standard evalua-
tion [12] on three domains: emergency management for mass
gatherings, autism research domain, and disease domain. In each
domain, we evaluate how TaxoFinder effectively builds tax-
onomic relations between concepts closer to the gold-stan-
dard taxonomy. To determine the quality of TaxoFinder, we
compare it with a state-of-the-art subsumptionmethod (SSM)
[1]. Our evaluation shows that TaxoFinder significantly out-
performs the subsumption method on all three domains.

This paper is organized as follows. Section 2 reviews
current major approaches to taxonomy learning and high-
lights main features of TaxoFinder. Section 3 presents the
details of TaxoFinder. Section 4 describes the evaluation of
TaxoFinder, and Section 5 concludes the paper and
presents future work.

2 RELATED WORK

Over the past decade, different approaches have been stud-
ied for taxonomy learning using various techniques such as
natural language processing, information retrieval, machine
learning and data mining (DM) [2]. NLP provides tools for
finding concepts and their taxonomic relations based on lin-
guistic patterns and their semantic relations, derived from a
lexical database (e.g., WordNet1). IR provides techniques
for analysing taxonomic relations of concepts often based
on their similarity or co-occurrences. ML and DM techniques
contribute to finding interesting patterns between concepts
observed in the given corpus and learning from such pat-
terns to infer taxonomic relations for unknown concepts.
We classify the existing approaches to taxonomy learning
from text into the following four categories.

2.1 Taxonomy Learning Approaches

First, pattern-based approaches typically apply NLP and ML
techniques, and are based on predefined lexico-syntactic
patterns (e.g., ‘NP such as NP’) to extract concepts and their
taxonomic relations. One of the pioneeringworks is proposed
in [3] where some lexico-syntactic patterns (e.g., ‘is-a’) are
manually identified and then more patterns are learned from
a bootstrapping algorithm.

Large corpora (i.e. the web) were also used in a boot-
strapping algorithm as an attempt to iteratively learn more
patterns [4]. In [13], a combination of deep linguistic pat-
terns and ML algorithms (e.g., support vector machine)
was used to infer concept relations from text. To enlarge
the coverage of concept relations, [14] investigated meth-
ods for leveraging a large semantic network such as Wiki-
pedia with lexico-syntactic patterns. With lexico-syntactic
patterns, verbal-noun dependency relations between concepts
extracted from text were also used to derive their taxo-
nomic relations [15].

Second, clustering approaches formulate the problem of
taxonomy leaning as a clustering or classification problem,
and often achieved based on IR and ML. These approaches
assign concepts into unknown clusters in such a way that
concepts in the same cluster are similar to each other in
some sense than those in other clusters [16]. Particularly,
hierarchical clustering techniques were popularly studied [5],
[6]. Often, these were based on the idea that concepts are
merged on a series of levels in which all concepts are initially
considered to be individual clusters, and these are subse-
quently merged into larger clusters until all concepts form
one cluster. Clusters of concepts were formed based on con-
cept similarity derived from WordNet, the domain corpus
or the Web. Then, these clusters were used to determine tax-
onomic relations between concepts.

Third, statistical approaches typically use IR, ML and DM,
and are often based on the premise that concepts, semanti-
cally related, tend to be near or co-occur together in a docu-
ment [2]. The more two concepts co-occur in a context (e.g., a
sentence, document), the more semantically related these
are. An approach based on high-order (or indirect order) occur-
rences between concepts for inferring their taxonomic rela-
tions was proposed [17]. In another study, applying the
probabilistic topic models for taxonomy learning was intro-
duced [7]. Given a set of concepts, this approach proposed
that Information Theory [18] can be used as a probabilistic
proxy for learning taxonomic relations between concepts.
The subsumption method has been widely studied, focuses on
the co-occurrences of concepts [1], [19]. The idea is that a con-
cept A subsumes another concept B (i.e. A is the hypernym
of B) if the documents (or some proportion of the corpus)
thatB appears are a subset of the documents thatA appears.

Fourth,graph-based approaches are commonly based on the
scheme that builds a graph in which nodes represent con-
cepts and edges their taxonomic relations. The distance of
each edge approximates the relationship strength between
two concepts. From the graph, a taxonomy can be finally
inferred using heuristics. A graph-based approach was
introduced in [8] that leverages the Web to build a taxon-
omy from a directed graph. Given a root and basic level
concepts, it finds their new possible hypernym/hypopnym
concepts (called intermediate concepts) using predefined
lexico-syntactic patterns, until no new concepts are found in
order to derive a taxonomy. Another study, OntoLearn
Reloaded [9], finds definition sentences for each concept. Such
sentences are identified by harvesting all sentences that con-
tain the given concept in the corpus and the web. It then
uses the results of a classifier to build a directed graph with
the concepts as nodes and the relations as edges. From this
complex graph, a taxonomy is finally induced through heu-
ristics considering incoming/outgoing edges, path-length
and connectivity of nodes.

Considering the above mentioned four categories, our
work falls under the graph-based approaches.

2.2 TaxoFinder versus Existing Approaches

TaxoFinder differs from the above approaches in the follow-
ing aspects: Unlike the pattern-based approaches, TaxoFinder
does not rely on predefined lexico-syntactic patterns that
often require additional investigation on extra knowledge
sources or classifiers to learn more patterns to discover1. http://wordnet.princeton.edu
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taxonomic relations of concepts. Compared to the clustering
and statistical approaches, TaxoFinder builds a graph which
characterizes associations between concepts, and then indu-
ces a concept taxonomy from the graph with a graph ana-
lytic algorithm. Moreover, our metric for measuring such
associative strengths is new and distinguished from the
similarity metrics used in the approaches in that TaxoFinder
considers and combines co-occurrence of concepts, the
distance between sentences where the concepts appear
together, and the semantic similarity between those senten-
ces. TaxoFinder differs from the existing graph-based
approaches in that it measures the associative strength
between concepts using the combination of the above three
factors, unlike [8], [9] that determine taxonomic relations
using predefined lexico-syntactic patterns.

3 BUILDING CONCEPT TAXONOMY

TaxoFinder performs three steps to derive a taxonomy as
outlined in Fig. 1. First, it identifies concepts from the
domain corpus using a concept extractor. The output of this
step includes (1) the ranked list of concepts according to
their domain relevance and (2) sentence information in
which each concept appears in each document in the cor-
pus. Second, TaxoFinder builds a CGraph which represents
how concepts are associated together based on their co-
occurrences. Using the sentence similarity and sentence
distance measures, their associative strength is quantified.
Lastly, a taxonomy is built from the CGraph using a graph
analytic algorithm. In the following, we describe each of
these steps in more detail.

3.1 Identifying Concepts from a Domain Corpus

Given a domain corpus, concept extraction is the first step for
taxonomy learning [10]. If extracted concepts are irrelevant,
a taxonomy may not correctly represent domain knowledge
as such irrelevant concepts can also lead to generating irrel-
evant taxonomic relations.

Most existing approaches to concept extraction can be
classified into the four categories [10]: (1) Machine learning
approaches that identify concept candidates from a corpus
using NLP techniques and then learn a classifier to identify
which candidates are most likely to be concepts; (2) Multiple
corpus-based approaches that first identify concept candidates
using NLP techniques and then use statistical distribution

of them across multiple corpora of different domains to
identify concepts; (3) Glossary-based approaches that make
use of author-provided glossary terms in a corpus to iden-
tify key concepts. (4) Heuristic-based approaches which
depend largely on different weighting schemes of noun
phrases (e.g., variant forms of TF-IDF, statistical distribution
of noun phrases), occurrence position of phrases, and/or
phrase length in words. Recently, a state-of-the-art heuris-
tic-based approach, named CFinder [10], was introduced
that combines linguistic patterns, statistical distribution,
domain-specific characteristics and inner structural pattern
of extracted terms, and its extensive evaluation showed its
effectiveness over other approaches.

In addition to the above four categories, MetaMap2 [20] is
a tool for extracting biomedical concepts from input text
through investigating their semantic relationships found in
Unified Medical Language System (UMLS)Metathesaurus [21].

As the output of the concept extraction step, we obtain
the ranked list of concepts according to their domain rele-
vance. In addition, we obtain a set of sentences in which
each concept appears in each document in the corpus. These
information sources will be used to build a CGraph. Taxo-
Finder can be incorporated with any concept extraction
method which can generate such information sources.

3.2 Building a CGraph Using Extracted Concepts

This section discusses the second step of TaxoFinder. Using
extracted concepts and the sentences in which these con-
cepts appear generated in Section 3.1, we build a CGraph
where a node represents each of such concepts and an edge
represents an association between nodes. Each edge has a
weight indicating the associative strength between two nodes.
We now describe the sub-steps of this second phase for
building a CGraph to learn a taxonomy.

3.2.1 Symbolic Notations

We first present basic notations that will be used throughout
the paper:

� LetD be a corpus in the target domain which is a col-
lection of k text articles:D ¼ fD1; . . . ; Dkg.

� Let S be the set of all sentences that appear in all
documents inD.

� Let C be the set of all concepts extracted fromD.
� Let Dj 2 D consist a sequence of m sentences that

appear in Dj, and be represented as: Dj ¼
hsj1; . . . ; sjmi.

� Let sji 2 S be the ith sentence in Dj and be repre-
sented as a set of n concepts that appear in the
sentence.

� Let sjðckÞ 2 S be the set of sentences that contain
a concept ck 2 C that appear inDj 2 D.

� Let IjðckÞ be the set of sequential indices of sentences
in sjðckÞ.

3.2.2 Building a Bigraph for CGraph

A CGraph is built from concepts joined by undirected
edges. This graph is initially built from a special bipartite

Fig. 1. The overview of TaxoFinder.

2. http://metamap.nlm.nih.gov/
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graph (simply bigraph) G that consists of two kinds of nodes,
one representing concepts in C and the other representing
the collection of sets of sequential sentences in S that contain the
concepts. In G, the concepts are not connected to any other
concepts, and the same is valid for the sets of sequential
sentences.

In G, an edge, between a concept and a set of sequential
sentences, represents that the concept appears in the set.
From G, we construct a CGraph in which two concepts are
connected if they appear together in the same set of sequen-
tial sentences. Such sequential sentences are referred to only
those sentences that sequentially appear in each document
Dj 2 D. As a unit of the set of sequential sentences, we use
a sliding window. For example, suppose we set the size of the
sliding window to be 11. Then, for each sentence si 2 S in
Dj, its sliding window is formed as its five preceding sen-
tences fsi�5; . . . ; si�1g, si and its five following sentences
fsiþ1; . . . ; siþ5g inDj.

An example of how to build a CGraph from G is shown
in Fig. 2: Suppose that ss1 and ss2 are two sets of sequential
sentences in Dj, where these sets are built using the same
sliding window size. Also, suppose that fc1; . . . ; c5g are
some of the concepts extracted from Dj. The left bigraph G

can be transformed into the right undirected graph CGraph,
where three concepts fc1; c2; c3g are connected to each other
as they appear together in the set ss1. For the same reason,
four concepts fc2; c3; c4; c5g are connected to each other as
they all appear in the set ss2. Note that, however, a concept
c1 is not connected to two concepts fc4; c5g as c1 does not
appear in ss2 where c4 and c5 appear in.

In this step, our intuition is that if two concepts appear
in the same set of sequential sentences, they are semanti-
cally associated to each other in the domain. This intuition
has also been effective to automatically learn interesting
relationships between terms in a text corpus on different
domains [22], [23].

3.2.3 Measuring Associative Strengths of Concepts

A key challenge in constructing the CGraph from concepts
in C is the calculation of an associative strength between two
concepts. This strength quantifies how semantically close
these two concepts are. The closer two concepts appear
together, the stronger their associative strength is consid-
ered. The associative strengths among all extracted concepts
will be used as the key for building a taxonomy from the
CGraph which will be discussed as the third step in
Section 3.3.

We define the associative strength between two concepts
c1 and c2, denoted by wðc1; c2Þ, with respect to the corpus D
as follow:

wðc1; c2Þ ¼ 1

k

Xk

j¼1

wjðc1; c2Þ; (1)

where k is the number of documents in D (i.e. k ¼ jDj), and
wjðc1; c2Þ represents the associative strength between c1 and
c2 with respect to a document Dj 2 D. Thus, wðc1; c2Þ is cal-
culated as the mean of the associative strengths between c1
and c2 across all documents in D. The value of wðc1; c2Þ is
normalized between 0 and 1, where 1 means that the asso-
ciative strength between two concepts is the highest, and 0
indicates that the strength is lowest.

To define wjðc1; c2Þ, we use a combination of two intu-
itions: (1) the more semantically similar c1 and c2 are, the
stronger their associative strength is, and (2) the closer two
concepts appear in a document, the stronger their associa-
tive strength is. To reflect the first intuition, we calculate
semantic similarity between two concepts.

The importance of the notion of context has been empha-
sized in many studies in information retrieval [24]. Measur-
ing similarity between two concepts (or terms) without
considering their contexts in most cases can reduce the con-
fidence of results. This is also in accord with ‘distributional
hypothesis’ that similar words tend to appear in similar
contexts [25]. Thus, we consider a context to measure
semantic similarity between two concepts. As the ‘context’
of a concept in a document, we use the ‘sentence’ where the
concept appears in.

Therefore, to implement the first intuition, given two
concepts, we consider the similarities of all pairs of senten-
ces where each concept appears in. To implement the sec-
ond intuition, we also consider the distance of the contexts
(i.e. sentences) where the two concepts appear in. These two
intuitions are combined in a unified formula which will be
discussed in the later part of this section.

Formally, given two concepts c1 and c2 with respect to a
document Dj 2 D, we define the function wjðc1; c2Þ in (1) as
follows:

wjðc1; c2Þ ¼ 1

m � n
X

p;q

asðsjp; sjqÞ; (2)

where:

� asðsjp; sjqÞ represents the function that calculates the
associative strength between two sentences sjp and
sjq inDj 2 D, where sjp 2 sjðc1Þ and sjq 2 sjðc2Þ;

� p and q are the sentence sequential indices belonging
to Ijðc1Þ and Ijðc2Þ in Dj, respectively, i.e., p 2 Ijðc1Þ
and q 2 Ijðc2Þ;

� IjðckÞ where k 2 f1; 2g represents the set of sequen-
tial indices of the sentences in sjðckÞ, i.e. the set of
sentences that contain ck that appears in Dj, accord-
ing to the definition in Section 3.2.1. Formally, IjðckÞ
is formed using the following definition:

IjðckÞ ¼ fi j if ck appears in sji 2 Djg; (3)

where i 2 ½1; jDjj� andDj ¼ hsj1; . . . ; sjjDjji; and
� m and n are the number of elements in Ijðc1Þ and

Ijðc2Þ, respectively, i.e.,m ¼ jIjðc1Þj, n ¼ jIjðc2Þj.
Formula (2) calculates the associative strength between

c1 and c2 using the associative strengths among their

Fig. 2. A bigraph is transformed into a CGraph.
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contexts; more specifically, the mean of the associative
strengths between all pairs of two sentences, sjðc1Þ and
sjðc2Þ, that contain c1 and c2 in Dj, respectively. Therefore,
if the associative strength between sjðc1Þ and sjðc2Þ is
stronger, we also derive that the associative strength
between c1 and c2 is stronger.

Now, our challenge is how to define the function
asðsjp; sjqÞ in Formula (2) such that it satisfies the two intu-
itions presented above. For this, our approach considers
two observations that have been often found in general text
articles: (1) the closer two sentences are in a document, the
more semantically associated they are considered (i.e. lin-
guistic cohesion) [23], and (2) the more semantically similar
two sentences are, the more strongly associated they are
[26]. Based on these two observations, our underlying prem-
ise for defining asðsjp; sjqÞ is that (1) the associative strength
between two sentences is stronger, if these are semantically
more similar to each other (i.e. sentence similarity), and (2)
if these are closer to each other (i.e. sentence distance).

Formally, we define asðsjp; sjqÞ in Formula (2) as follows:

asðsjp; sjqÞ ¼ simðsjp; sjqÞjp�qj; (4)

where the sentence similarity simðsjp; sjqÞ, between two sen-
tences sjp and sjq, is based on the approach proposed in [27]
which showed a high performance in [26]:

simðsjp; sjqÞ

¼
P

w2sjp simmaxðw; sjqÞ þ
P

w2sjq simmaxðw; sjpÞ
jsjpj þ jsjqj ;

(5)

where simmaxðw; sjqÞ is the highest semantic similarity score
between w 2 sjp and words having the same Part-Of-Speech
(POS) tag as w in sjq. To measure the similarity between two
words in (5), we use the following word-to-word similarity
measures: First, for words with the same POS tag (i.e. noun,
verb, adjective or adverb), we use a well-known word-to-
word semantic similarity method using WordNet [28].
WordNet can be seen as a lexical ontology where concepts
correspond to word senses, and concept labels are denoted as
synsets—groups of synonym words (each synset expresses a
distinct concept). To measure the similarity, the correct
sense of each word compared needs to be determined (i.e.
word sense disambiguation (WSD) [29]). For this, we use the
first sense of each word provided in WordNet as the senses
of words in WordNet are ranked according to frequency.
Thus, our premise is that the first sense is the most im-
portant, representative sense of a given word. Second, for
words having the other POS tags, we use instead a lexical
match measure (i.e. the edit distance) that assigns 1 to
simmax, if the words are lexically identical.

The similarity in Formula (5) is normalized between
0 and 1, where 1 indicating identical sentences, and 0 no
semantic overlap between the two sentences.

As defined in Formula (4), we combine the sentence simi-
larity Formula (5) with the distance jp� qj of the two senten-
ces sjp and sjq. The closer the indices of two sentences is, the
stronger their associative strength is. The difference jp� qj is
used as a scaling exponent of the sentence similarity. Thus,
the exponent jp� qj is used to exponentially penalize the
similarity value further if the two sentences aremore distant.

To sum up, referring to Formulas (1)-(5), the calcula-
tion of the associative strength between two concepts is
sensitive to both the semantic information shared by the
sentences that contain the concepts and the distance
between the sentences. If two concepts appear in two
sentences whose semantic similarity is higher, their asso-
ciative strength is closer to 1. This associative strength is
exponentially penalized by the distance between the two
sentences.

To illustrate how to calculate the associative strength
between two concepts, let us consider an example in Fig. 3.
Suppose that there is a corpus D which has a document D1

consisting of five sentences, D1 ¼ fs1; s2; s3; s4; s5g. Suppose
that ss1, ss2 and ss3 are three sentence sets, each having
k-sequential sentences that appear in D. Assuming that a
sliding window size is 3 (i.e. k ¼ 3), we set ss1 ¼ fs1; s2; s3g,
ss1 ¼ fs2; s3; s4g, and ss3 ¼ fs3; s4; s5g. In Fig. 3a, each
directed edge from one a to the other bmeans a belongs to b.
For example, looking at ss1, s1 and c1, we see that s1 belongs
to ss1, and c1 belongs to (i.e. appears in) s1.

Suppose that we also extracted three concepts c1, c2, and
c3 from D1, i.e., C ¼ fc1; c2; c3g, where c1 appears in s1 and
s3, c2 appears in s1 and s5, and c3 in s5. Thus, s11 is the sen-
tence represented as s11 ¼ fc1; c2g, since these two concepts
appear in the sentence s1. Also, s13 ¼ fc1g, s15 ¼ fc2; c3g. In
addition, s1ðc1Þ denotes the set of sentences that contain
the concept c1 appears in D1, i.e. s1ðc1Þ ¼ fs1; s3g. Also,
s1ðc2Þ ¼ fs1; s5g, and s1ðc3Þ ¼ fs5g. Also, I1ðc1Þ indicates the
set of sequential indices of sentences s1ðc1Þ, thus I1ðc1Þ ¼
f1; 3g. Also, I1ðc2Þ ¼ f1; 5g, and I1ðc3Þ ¼ f5g.

Using the notations in Section 3.2.1 and assuming the
sentence similarities as Fig. 3b, the associative strength
between two concepts c1 and c2 with respect to D, wðc1; c2Þ,
is calculated as (see also Fig. 3c):

wðc1; c2Þ ¼ w1ðc1; c2Þ

¼ asðs11; s11Þ þ asðs11; s15Þ þ asðs13; s11Þ þ asðs13; s15Þ
4

¼ 10 þ 0:54 þ 0:62 þ 0:72

4
¼ 0:48:

Following the above calculation, we can also obtain
wðc2; c3Þ as 0.28 and wðc1; c3Þ as 0.53.

Fig. 3. An example of measuring the associative strengths.
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3.3 Deriving a Taxonomy from CGraph

Once we build a CGraph, the third step is to derive a taxon-
omy from it. Our eventual goal is to build a taxonomy in
such a way that it maximizes the overall associative strengths
among all concepts in CGraph to find a good taxonomy. This
is aligned with the notion of a good taxonomy used in
the prior work [30]. The learned taxonomy guarantees that
highly associated concepts are closely positioned.

The more concepts a CGraph has, the more complicated
theCGraph tends to be, as the number of edges in the CGraph
could be substantially increased as a result. Note that the
maximum number of edges in a CGraph is jCj � ðjCj � 1Þ=2,
where jCj is the number of nodes in the graph. From a
CGraph, one possible way for deriving a taxonomy might be
to reduce the overall number of edges in the graph by adjust-
ing the size of the sliding window. If we reduce this size, the
number of concepts that co-occur together will be decreased,
and thus the number of associations among the concepts will
be also decreased. Another possible way might be removing
edges with very low associative strengths. However, both
ideas cannot guarantee that the reduced graph would form a
taxonomy,where the total number of edgesmust be (jCj � 1).
Although these ideas might be able to build (jCj � 1) edges,
they will not always result in forming a taxonomy (i.e. not a
hierarchical structure). Also, these ideas do not consider the
connectivity in the resulting taxonomy thus easily producing
disconnected graphs.

In TaxoFinder, given the concept set C, we construct a
spanning tree to derive a taxonomy by reducing a substantial
amount of the edges from the CGraph. This approach guar-
antees that the learned taxonomy has (jCj � 1) edges and it
connects all the nodes in C. A spanning tree is a minimal set
of edges that connect all nodes in a graph. In particular, we
build a maximum spanning tree that connects all the nodes in
CGraph with the maximum sum of the associative strengths
between them and discards the edges with less significant
associative strengths. This spanning tree is our learned tax-
onomy that eventually captures the maximum associative
strengths among the concepts in the CGraph.

Formally, given a CGraph with nodes (or concepts) C,
we construct a taxonomy, which is a subgraph T , defined as
follows:

argmax
T�CGraph

X
wðci; cjÞ; (6)

for all ðci; cjÞ 2 T and wðci; cjÞ is the associative strength
between ci and cj calculated by Formula (1). Note that we
must decide which node (concept) should be the root of T .
Intuitively, the root node is the most relevant concept in the
target domain among all the concepts in T . Given a ranked
list of concepts extracted by a concept extractor, the first
ranked concept is the most relevant concept. Thus, we
choose it as the root node in T .

To build a taxonomy, initially T has the first ranked con-
cept and is repeatedly augmented with the edge ðx; yÞ with
the maximum associative strength such that x 2 T; y 62 T
from the CGraph using the Prim’s algorithm [31]. An exam-
ple of building a taxonomy is shown in Fig. 4. The label on
each edge indicates the associative strength between the
two connected nodes. Initially, the algorithm starts with c1

(the root concept) and subsequently chooses the edges (c1,
c2), (c2, c5), (c5, c3) and (c5, c4) to build a taxonomy. Note that
a path in the resulting MST is only made if there is an asso-
ciation in the given CGraph.

Eventually, using the MST algorithm on the CGraph, we
accomplish our goal—the constructed taxonomy maximizes
the overall associative strengths among all concepts C with
ðjCj � 1Þ edges from the CGraph and enables highly associ-
ated nodes to be closely positioned together.

4 EVALUATION

Evaluating a learned taxonomy is a crucial task for assessing
its quality and ensuring that it is the optimal representation
of a domain. In general, ontology (or taxonomy) evaluation3

is known to be a complicated task and even for humans as
there is no clear, unique way for modeling domain knowl-
edge [9]. In this section, we first review existing evaluation
approaches. Then, we will examine evaluation criteria for
one of the widely-used approaches, gold-standard evaluation
in more detail, which is also used in this work. After that
we present our evaluation method, and finally discuss eval-
uation results.

4.1 Taxonomy Evaluation Approaches

Existing approaches to evaluating learned taxonomies can
be divided into four categories based on how evaluation is
made [12]: (1) Application-based (or task-based) evaluation eval-
uates the quality of learned taxonomies in the context of
applications by measuring their impact on the aspect of
improving the performance of applied applications [32],
[33]; (2) Data-driven (or corpus-based) evaluation evaluates
the fitness between a learned taxonomy and a domain-spe-
cific corpus representing the knowledge of the target
domain [34], [35]. It usually measures the terminological
coverage of the learned taxonomy with respect to extracted
key terms from the corpus; (3) Domain-expert evaluation
relies on human judges with relevant domain expertise to
assess the quality of learned taxonomies [9], [19]; and (4)
Gold-standard (or reference-standard evaluation) is the most
popular approach for taxonomy evaluation and compares a
learned taxonomy with a gold-standard taxonomy [1], [9],
[15]. This approach assumes that a gold-standard taxonomy
is available in the target domain and both the learned and
gold-standard taxonomies are built using the same set of
terminological concepts [36].

We now more specifically examine evaluation metrics
used in ‘gold-standard evaluation’. Themetrics are generally

Fig. 4. The derivation of a taxonomy from a CGraph.

3. In general, taxonomy evaluation is part of ontology evaluation as
taxonomic relations are the representative relations in ontologies.
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divided into a local and a globalmeasures [12]. The local mea-
sure is used for comparing the position of a concept in the
learned taxonomy Tl with that of the same concept in the
gold-standard taxonomy Tg. Thus, the concepts compared
must exist in both taxonomies. The globalmeasure then com-
putes the local measures of all concepts in Tl, thus providing
the overall taxonomic quality of Tl.

To define a local measure, the notion of the common sem-
atic cotopy (csc) is often used [1], [6]. The csc represents the
collection of a concept and its both super-concepts and sub-
concepts shared by both Tl and Tg. Formally, given a con-
cept c 2 Tl with respect to Tg, its csc is defined as [1]:

cscðc; Tl; TgÞ ¼ fcijci 2 Cl \ Cg ðci �Cl
c _ c �Cl

ciÞg; (7)

where Cl is the set of concepts in Tl, Cg is the set of concepts
in Tg, and ‘�Cl

’ is the order induced by taxonomic relations

in Tl (i.e. ci is a either a sub-concept of c (ci < c) or super-
concept (c < ci) or the equivalent of c (ci ¼ c)).

Based on this notion, local taxonomic precision (tp) and local
taxonomic recall (tr) are defined using the similarity of con-
cepts’ positions in Tl and Tg, which measure the quality of
the learned relations of each concept c 2 Tl, denoted as [1]:

tpðcÞ ¼ jcscðc; Tl; TgÞ \ cscðc; Tg; TlÞj
jcscðc; Tl; TgÞj ;

trðcÞ ¼ jcscðc; Tl; TgÞ \ cscðc; Tg; TlÞj
jcscðc; Tg; TlÞj ;

tfðcÞ ¼ 2 � tpðcÞ � trðcÞ=ðtpðcÞ þ trðcÞÞ;

(8)

where tfðcÞ is local taxonomic F-measure of c, calculated as a
harmonic mean of tpðcÞ and trðcÞ. Then, global taxonomic pre-
cision (TP), global taxonomic recall (TR), and global taxonomic
F-measure (TF) are defined to measure the quality of the rela-
tions between two taxonomies Tl and Tg [1]:

TP ¼ 1

jCl \ Cgj
X

c2Cl\Cg

tpðcÞ;

TR ¼ 1

jCl \ Cgj
X

c2Cl\Cg

trðcÞ;

TF ¼ 2 � TP � TR=ðTPþ TRÞ;

(9)

where the higher a TF value is, the better the quality of the
learned taxonomy is.

4.2 Evaluation Framework

To determine whether TaxoFinder is an effective method for
taxonomy learning, we evaluate it across three domains: (1)
emergency management for mass gatherings (simply, EMD) [37]
in which our aim is to extract concepts for medical emer-
gency management for mass gatherings and build a taxon-
omy using them, (2) autism research domain (simply, ARD)
in which our aim is to come up with concepts specific
to autism research and build their taxonomic relations, thus
providing a valuable insight into the nature of autism
research, and (3) disease domain (simply, DD) where our
focus is to extract concepts related to general disease and
build a taxonomy using them.

As a gold-standard taxonomy for evaluation, we used an
ontology DO4MG [37] for EMD which has been recently

developed via a thorough evaluation by domain experts;
for ARD, we selected the recently-developed autism pheno-
type (ASDPTO) ontology [38]. Although it focuses more on
conceptualizing knowledge about the Autism Spectrum
Disorder behavioral phenotype, it represents part of the
knowledge within ARD and could be considered as a gold
standard taxonomy; and for DD, we used a disease taxon-
omy within (Medical Subject Headings)MeSH4 that is a repre-
sentative, biomedical controlled vocabulary consisting of
26k+ biomedical terms arranged in a taxonomic structure
introduced by National Library of Medicine (NLM).

As the input corpus, we used the ‘Compendium of Mass
Gatherings’ collection on EMD that consists of 27 fulltext
articles for emergency management for mass gathering [39].
This corpus was one of the main text sources used to build
DO4MG [37]. On ARD, we collected 146 fulltext articles
between April 2004 and April 2014 from PubMed.5 All these
articles were annotated with an indexed term, ‘autism’ or
‘autistic disorder’, and thus this assures that these are all rele-
vant articles to autism research. ForDD,weused an extensive
set of biomedical articles, 94,654 articles (using only their
titles and abstracts as all of their fulltext are not available),
that are a 2/3 random subset of biomedical articles published
fromNovember 2012 to February 2013 inMEDLINE.6 Table 1
summarizes the corpus used in each domain. As our evalua-
tionmetrics, we used TF presented in Formula (9).

4.2.1 Comparison with a Subsumption Method

To measure a relative performance of TaxoFinder, we com-
pare it with a state-of-the-art subsumption method [1].
This method builds taxonomic relations based on the co-
occurrences of identified concepts. The co-occurrence of
two concepts x and y is identified as follows: [P ðxjyÞ 	 t;
P ðyjxÞ < t], where t is a co-occurrence threshold. As an
optimal value for t, we used 0.2 suggested by [1]. This for-
mula is interpreted as if x appears in more than the t pro-
portion over the documents that y appears and if y
appears in less than the t proportion over the documents
that x appears, x is considered a subsumer of y.

However, this formula allows a concept to have multiple
subsumers that violates the structure of a taxonomy. To
address this, [1] measures a subsumption score of a sub-
sumer p for a given concept x to find the unique subsumer
for x, denoted as ssðp; xÞ:

ssðp; xÞ ¼ P ðpjxÞ þ
X

p02Sp
wðp0; xÞ � P ðp0jxÞ; (10)

TABLE 1
A Summary of the Experimented Corpus

Domain Doc# Total
Sentence#

Average Sentence#
Per Doc

EMD 27 3,808 141 (fulltext)
ARD 146 29,687 203 (fulltext)
DD 94,654 921,396 10 (title & abstract)

4. http://www.nlm.nih.gov/mesh/
5. http://www.ncbi.nlm.nih.gov/pubmed
6. http://www.nlm.nih.gov/pubs/factsheets/medline.html
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where p is a potential subsumer of x, Sp is the set of subsum-
ers of p, and wðp0; xÞ denotes a weight of the relation
between p0 and x, measured by wðp0; xÞ ¼ 1=dðp0; xÞ where
dðp0; xÞ is the layer distance between p0 and x. The more dis-
tant these two concepts are, the lower their weight is. If a
concept has more than two subsumers, Formula (10) is
applied to all the pairs of the concept and its subsumers.
Then, the subsumer with the highest subsumption score is
finally chosen as the a best subsumer for the concept.

4.2.2 Key Concept Extraction

As mentioned before, extracting concepts from a given cor-
pus is the first step for taxonomy building. In this work, we
used two concept extractors: a state-of-the-art key concept
finder CFinder [10] is used for the EMD and ARD domains,
andMetaMap [20] is used for the DD domain.

CFinder has three main steps. First, it extracts noun
phrases using linguistic patterns (i.e. ‘(JJ)�(N)þ’: ‘JJ’ is an
adjective and ‘N’ is a noun) based on POS tags of concept
candidates for each document in the corpus. Second, it
measures domain-specific weights of the candidates by com-
bining their (1) phrase lengths, (2) word occurrence patterns,
(3) statistical knowledge (i.e. frequency information in the
corpus) and (4) domain-specific knowledge (i.e. domain-
specific frequency information in the corpus). Third, it
aggregates the weights of the candidates across all docu-
ments in the corpus, and ranks them according to their
weights. Finally, the user-specified top concepts (C) are cho-
sen for building a taxonomy.

However, the concepts in C may contain particular con-
cepts whose meanings (or senses) are possibly ambiguous.
If the meanings of a certain concept are multiple (i.e. ambig-
uous), we can determine the most representative sense of
the concept through WSD. As a WSD algorithm, we used a
variant form of the SSI algorithm [29], introduced in [1].
After applying it on the corpus, we determined the most
probably correct sense of each concept in its context, nor-
mally represented as its sentence. We also used a sentence
as a unit of context. Then, we may observe that a certain
concept can have different meanings in the corpus. In this
case, its most frequent meaning was chosen as its correct
meaning, as the taxonomy to be built will have only one
meaning per concept. Also, if there are some concepts with
the same meaning, we selected the highest ranked concept
among them determined by CFinder as the concept label in
the taxonomy, while the lower ranked concepts were fil-
tered out from C. This filtering approach was also used
in [1]. Note that as the input of TaxoFinder and SSM, only
those concepts, remained in C after applying the above
WSD filtering approach, were used.

It is noteworthy that the SSI algorithm’s results were the
same as the originally extracted concepts by CFinder in
both EMD and ARD domains. It means that the algorithm
did not find any duplicated concept pair from the concepts
to filter out. The reason comes from the following features
of CFinder: it prefers to extract longer noun phrases as con-
cepts whose constituent sub-words occur more frequently
and are included in a given domain glossary. In other
words, CFinder focuses on extracting longer domain-
specific noun phrases than general single-words from the
input corpus in general. We observed that the majority of

concepts extracted by CFinder in both the EMD and ARD
domains are multi-words whose length is greater than 1.
We note that the SSI algorithm can be a useful method for
filtering out terms whose senses are found in WordNet [1].

As described in Section 3.1, MetaMap is a tool for extract-
ing MeSH concepts from input text through investigating
their semantic relationships. More specifically, it generates
a ranked list of disambiguated concepts that are estimated
to be the most correctly matched MeSH terms per sentence
in each document in the corpus. Thus, when we use Meta-
Map, we do not need to apply the WSD filtering approach
discussed above. In our work, concepts recommended by
MetaMap were ranked according to their occurrence fre-
quencies over all documents in the corpus.

4.3 Evaluation Results and Analysis

We first examine the main features of the CGraphs and tax-
onomies learned by TaxoFinder on the three experimental
domain. Then, we evaluate these taxonomies using gold-
standard evaluation. After that we summarize the impor-
tant observations drawn from the results.

4.3.1 Learned CGraphs and Taxonomies

With regard to EMD, from the input corpus, we extracted
the top-300 concepts by CFinder and after applying the SSI
algorithm, whereas the gold-standard DO4MG ontology
consists of 296 concepts.7 Considering ARD, we also
extracted the top-300 concepts using the same way as done
on EMD from the input corpus, whereas the gold-standard
ASDPTO ontology is comprised of 284 concepts. Regarding
DD, we extracted the top-10,000 concepts using MetaMap
from the large input corpus, whereas the gold-standard dis-
ease taxonomy within MeSH has 8,002 concepts.

Using the extracted concepts in each domain, we learned
a taxonomy by TaxoFinder. As a size of the sliding window
introduced in Section 3.2.2, we used 9 which was chosen as
an optimal value in our experiments as it consistently
showed the best performance in all three domains in terms
of TF. To choose this, we tested TaxoFinder using odd val-
ues in [3, 11] (i.e. 3, 5,. . ., 11) to have the same number of
preceding and following sentences for a given sentence. The
maximum value 11 was chosen, since we observed that
increasing values beyond 11 could not change the perfor-
mance of TaxoFinder.

Table 2 shows some features of the constructed CGraphs.
As observed, it turned out that each concept is connected

to 30-concepts on EMD, 18-concepts on ARD, and 312-con-
cepts on DD on average, using the sliding window size 9.

TABLE 2
A Summary of the CGraphs

Domain Concept# Edge#
in CGraph

Mean Edge#
Per Concept

EMD 300 9,014 30
ARD 300 5,325 18
DD 10,000 3,129,031 312

7. The version of the DO4MG ontology used in this work is an
extended version of the one used in [10].
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In the following,we present an interesting observation that
the correlation between the following two variables highly fits
into an exponential curve on each domain: (1) the number
of connected concepts, that is, k-concepts (where 1 � k � 9)
appearing together in the CGraph and (2) the number of sen-
tences that have the co-occurrence of such k-concepts.

In Figs. 5a, 5b, and 5c, we see the scatter plot diagram
showing this correlation on each domain. In a diagram, x-
axis represents the first variable, and y-axis (also each
label attached with each plot) denotes the second variable.
In a diagram, we add an exponential trend-curve (denoted
in a dotted-curve) to the plotted data depicting trends in the
data. Each R2-value indicates how well the plotted data fits
an exponential curve, normalized between 0 and 1. The
higher a value, the better the data is fitted to the given
model. As seen, the value is 0.9614 on EMD and 0.9829 on
ARD. It indicates the correlations between these two varia-
bles are highly fitted to the curves overall, although the
numbers of total sentences and concepts highly vary across
the two domains.

On the other hand, in Fig. 5c, we see theR2-value on DD is
lower (i.e. 0.7405) than those on EMD and ARD. In particular,
we see that the maximum number of sentences is 156,905 (as
the arrow indicates), each containing 3-connected concepts
appearing together, which is higher than the numbers of

sentences each containing 1- and 2-connected concepts
appearing together.Wenote that the input corpus forDDcon-
sists of titles and abstracts of domain articles, while that one
for EMD and ARD is composed of domain fulltext articles.
Thus, this observation may indicate that if the input corpus
consists of fulltext articles, there may be a higher chance that
the largest part of sentences have only 1-concept; while if it
consists of titles and abstracts of domain articles, there may
be a higher chance that the largest part of sentences have
k-concepts (where k > 1Þ appearing together, where we find
such k is 3. This may indicate that domain concepts are more
co-located in titles and abstracts than fulltext within articles.
However, in Fig. 5c, we observe that the correlation between
the above two variables for k-concepts (where 3 � k � 9)

highly fits into an exponential curve as theR2-value indicates,
i.e., 0.959, calculated from the solid exponential curve. It indi-
cates that the correlation between two variables highly fits an
exponential curve for k-concepts (k 	 3) in all three domains.

Table 3 shows the five-top concepts identified by CFinder
and MetaMap on the three domains. The top concept is
‘mass gathering’ on EMD, ‘autism spectrum disorder’ in
ARD, and ‘therapeutics’ on DD, respectively, which is very
highly relevant to each domain. As presented in Section 3.3,
the top concept is used as the root in the learned taxonomy
in TaxoFinder. We also note that longer concepts are
extracted on ARD than EMD using CFinder. The reason is
that the abbreviations used in ARD were generally com-
prised of longer domain terms than EMD as seen through
abbreviations parenthesized in the table.

Figs. 6a and 6c show the learned taxonomies on the three
domains. In each taxonomy, the larger, red-colored node
represents the root concept shown in Table 3 while other
concepts are denoted in gray-colored nodes. As can be seen,
TaxoFinder builds a taxonomy on each domain where the
root is the top ranked concept identified using a concept
extractor (e.g., CFinder and MetaMap), and it has ðjCj � 1Þ
edges and connects all edges in C where C is the given con-
cept set from the concept extractor.

We now compare TaxoFinder and the subsumption
method introduced in Section 4.2.1. As seen in Table 4,
TaxoFinder built 1 taxonomy on all three domains. On the
other hand, SSM produced 46 separate sub-taxonomies on
EMD, 17 separate sub-taxonomies on ARD, and three sub-
taxonomies on DD. This shows that TaxoFinder is able to

Fig. 5. The correlations between concepts appearing together and the
numbers of sentences that have the occurrence of such concepts.

TABLE 3
The Five-Top Concepts in the Three Domains

Rank EMD ARD DD

1 mass gathering autism spectrum disorder therapeutics
2 event diagnostic and statistical

manual of mental
disorders (DSM-V)

population
groups

3 patients strategies for teaching
based on autism research
(STAR)

neoplasms

4 emergency medical
services (EMS)

checklist for autism
spectrum disorders in tod-
dlers (CHAT)

evaluation
studies as topic

5 patient presentation
rates (PPR)

modified checklist for
autism in toddlers
(M-CHAT)

risk
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build a taxonomy connecting all concepts together as it is
derived from a graph using an MST algorithm. On the other
hand, SSM could not fully consider the taxonomy connec-
tivity. Thus, SSM may possibly have a high chance of miss-
ing important taxonomic relations between concepts, and
also does not fully recognize which concept is the most gen-
eral concept (i.e root).

4.3.2 Gold-Standard Evaluation

We now present the evaluation results of learned taxono-
mies using TF. For this, given each domain, we first built

simpler taxonomies of the learned taxonomy Tl and gold-stan-
dard taxonomy Tg using only the identical or similar con-
cepts commonly appearing in both taxonomies. Here, our
objective is to better facilitate the comparison between these
two taxonomies using such concepts.

Building these simpler taxonomies on each domain takes
two steps described as follows: First, we found which con-
cepts are in common in both Tl and Tg. For this, we selected
those concepts (i.e. concept labels) in Tl that also appeared
in Tg. In addition, some concepts may have the same mean-
ing but can be labeled differently. Thus, we selected those
concepts in Tl whose similar concepts also appeared in Tg.
To this end, for each concept c in Tl, we measured semantic
similarity between c and all concepts in Tg, and then
selected only concepts highly similar to c. As the similarity
measure, we used Formula (5) to measure the semantic sim-
ilarity between phrases. Given two concepts, if their similar-
ity is above 0.8, we assumed that these were highly similar
to each other. Through these processes, we finally found
identical or similar concepts on EMD and ARD, denoted as
C, which are in common in Tl and Tg. However, in DD, as no
two MeSH terms have the same meaning, we used the exact
matching not the above similarity to find the common con-
cepts between Tl and Tg.

Second, we built simpler taxonomies of Tl and Tg using C.
Let T be a taxonomy (i.e Tl or Tg) and Ts be the T ’s simpler
taxonomy. Given each pair fci; cjg 2 C, if there exits a taxo-
nomic relation between them in T , we added this pair and
their taxonomic relation into Ts. By doing so, we built Ts

represented using only concepts in C and their taxonomic
relations that originally appear in T . Through the above two
steps, we finally found the number of concepts and the
depth of Tl and Tg for each domain as seen in Table 5.

We measure the quality of the learned taxonomies
in terms of TP, TR, and TF. Table 6 shows the comparison

Fig. 6. The learned taxonomies. In each taxonomy, the root concept (the
top-ranked concept) is denoted as the larger red-colored node.

TABLE 4
Learned Taxonomy Comparison

Domain Method Taxonomy# Depth

EMD TaxoFinder
SSM

1 13
46 3

ARD TaxoFinder
SSM

1 13
17 9

DD TaxoFinder
SSM

1 12
3 15

TABLE 5
Gold-Standard and Learned Taxonomies

Domain Method Concept# Depth

EMD Gold-Standard 48 4
TaxoFinder 5

SSM 3

ARD Gold-Standard 21 4
TaxoFinder 4

SSM 5

DD Gold-Standard 2,792 8
TaxoFinder 5

SSM 6

TABLE 6
Comparison between TaxoFinder and SSM

Domain Method TP TR TF

EMD TaxoFinder 0.58 0.63 0.61
SSM 0.56 0.28 0.37

ARD TaxoFinder 0.70 0.73 0.72
SSM 0.52 0.49 0.50

DD TaxoFinder 0.91 0.34 0.49
SSM 0.87 0.33 0.48
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between TaxoFinder and SSM on the three domains. The
higher performance under each evaluationmetric is denoted
in bold. As seen in the table, TaxoFinder outperforms
SSM on all three domains in terms of all TP, TR, and TF.
In particular, in terms of TF, the quality of taxonomic
relations built by TaxoFinder turns out to be approxi-
mately 61 percent, while the quality built by SSM is 37
percent on EMD; the qualities of TaxoFinder and SSM are
approximately 72 and 50 percent, respectively, on ARD;
and 49 and 48 percent are shown as the qualities of Taxo-
Finder and SSM, respectively, on DD. This roughly indi-
cates that 61, 72, and 49 percent of the taxonomic
relations, identified by TaxoFinder, are the same with the
relations in the gold-standard taxonomies on EMD, ARD,
and DD, respectively. On the other hand, SSM produces
37, 50, and 48 percent of taxonomic relations on EMD,
ARD, and DD, respectively, in this regard. The results
thus show that TaxoFinder highly outperforms SSM on
all three domains: TaxoFinder shows 64.8, 44 and 2 per-
cent improvements over SSM in terms of TF on EMD,
ARD and DD, respectively.

To estimate whether TaxoFinder has significant improve-
ments over SSM, we also performed the paired t-test [40]. The
test demonstrated that TaxoFinder significantly outperforms
SSM on all three domains at 99.9 percent (a ¼ 0.001) confi-
dence (e.g., p-value < a) with respect to TF (more exactly tf
(i.e. local taxonomic F-measure) scores (see (8)). Through the
above results, we show that TaxoFinder has a greater ability
over SSM in buildingmore accurate taxonomic relations.

It may also be worth examining the distribution of the tf
scores of TaxoFinder across different depths of the learned
taxonomy on each domain. This can help us to understand
the amount of different contribution of concepts taxonomi-
cally connected to some other concepts at different depths
in the taxonomy to produce the TF score in Table 6. As seen
in Fig. 7, most of less accurate tf scores were made with the
concepts at the 2nd-depth and the leaf concepts of the tax-
onomy, while the concepts at the intermediate depths gen-
erating more accurate tf scores on each domain. It may
indicate that given a concept, its ‘csc’ (i.e. common semantic
cotopy) may have more erroneous concepts at higher- or
lower-depths than intermediate depths, as tf is measured
based on the csc collections of the two concepts compared.

Finally, we point out the following important conclu-
sions drawn from our evaluation. First, TaxoFinder sig-
nificantly outperforms SSM. This provides evidence that
TaxoFinder is an effective taxonomy learning method.
Second, our evaluation results show the validity of our pri-
mary motivation of this work that utilizing both sentence

distance and sentence similarity can be effectively used for
building a taxonomy.8

4.3.3 Discussion

The aim of this work is to develop a new method for taxon-
omy learning by building a CGraph, which is constructed
from extracted concepts from a domain corpus. The idea
behind building the CGraph for taxonomy learning is that it
can effectively represent a set of semantically related (in our
context, co-occurred, adjacent) concepts and their relation-
ships. In addition, implicit, meaningful relationships between
some concepts can be inferred through the knowledge cap-
tured in the CGraph for taxonomy learning purposes.

The key features of TaxoFinder include combining two
methods of sentence distance and sentence similarity
to predict the associative strengths among concepts in a
CGraph, and then applying an MST algorithm to induce a
taxonomy. The distinctive features of TaxoFinder compared
to existing approaches is that (1) it does not use lexico-syn-
tactic patterns that often require additional investigation on
extra knowledge sources, (2) it does not use clustering tech-
niques that have been mostly focused on making flat clus-
ters between concepts, and (3) it analyzes and uses intra-
sentence content and inter-sentence relationships in which
related concepts co-occur together.

TaxoFinder can seamlessly work together with any con-
cept extractor able to identify a ranked list of concepts
according to their relevance to the target domain such as
CFinder [10]. Moreover, in the learned taxonomy, we can
have more insight into how strongly or weakly associated
concepts are by looking at their associative strengths mea-
sured by TaxoFinder.

In information retrieval, association knowledge between
terms has beenwidely mined using data mining for different
applications [41]. Typically, this knowledge has been synthe-
sized mainly using co-occurrences of the terms extracted
from the target corpus. For taxonomy learning, estimating
associations between such terms is also essential to come up
with a good taxonomy. However, most existing studies in
taxonomy learning have focused on measuring these associ-
ations largely based on such co-occurrences [2]. For example,
subsumption methods are generally based on the idea that a
concept A subsumes a concept B if the documents (or some
proportion of the corpus) that B appears are a subset of the
documents that A appears [1], [19]. In another study [42],
based on the co-occurrences of concepts within the corpus, a
similarity measure was adopted to determine a taxonomic
relation between two concepts. However, in addition to
such co-occurrence notion, TaxoFinder further analyzes the
impact of sentences surrounding extracted concepts using
sentence similarity and sentence distance to measure their
associative strengths. As shown in our evaluation, our
approach can be effectively used for taxonomy learning.

5 CONCLUSION

This paper proposed a new taxonomy learning approach,
TaxoFinder, and showed its effectiveness against a recent

Fig. 7. The tf score changes with taxonomy depths.

8. The datasets used in the paper and more detailed snippets of our
evaluation can be seen at http://yongbinkang.wix.com/main#!taxo-
finder/c1wcy.
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subsumption method on three different domains. Taxo-
Finder aims to build a graph, CGraph, representing con-
cepts extracted from a domain corpus and their associative
strengths. To measure such strengths, we proposed a for-
mula combining (1) the co-occurrence frequency of concepts
within a sliding window, i.e., the set of consecutive senten-
ces, and (2) the distance and similarity of sentences where
such concepts co-occur together. From the CGraph, we used
a graph analytic algorithm to induce a taxonomy aiming to
maximize the overall associative strengths among concepts
to find a good taxonomy. Our evaluation showed that Taxo-
Finder is a highly effective method for taxonomy learning,
significantly outperforming the subsumption method at
99.9 percent confidence using a gold-standard evaluation
method on the three domains.

In our future work, we plan to evaluate TaxoFinder with
different metrics (e.g., computational complexity), and also
compare TaxoFinder to hierarchical clustering methods that
generate connected and deep taxonomies. We also plan to
learn an optimal number of concepts as the input of Taxo-
Finder rather than using a fixed number of concepts. More-
over, we will attempt to apply different graph analytic
methods (e.g., local connectivity of nodes) to come up with
a taxonomy in addition to an MST algorithm. Further, it
would be interesting to investigate incorporating Word2-
Vector9 into TaxoFinder as an alternative method to learn
relationships among concepts.
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