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a b s t r a c t

Ontologies are the fundamental building blocks of the Semantic Web and Linked Data. Reasoning
is critical to ensure the logical consistency of ontologies, and to compute inferred knowledge from
an ontology. It has been shown both theoretically and empirically that, despite decades of intensive
work on optimising ontology reasoning algorithms, performing core reasoning tasks on large and
expressive ontologies is time-consuming and resource-intensive. In this paper, we present the meta-
reasoning framework R2O2* to tackle the important problems of understanding the source of TBox
reasoning hardness and predicting and optimising TBox reasoning efficiency by exploiting machine
learning techniques. R2O2* combines state-of-the-art OWL 2 DL reasoners as well as an efficient OWL
2 EL reasoner as components, and predicts the most efficient one by using an ensemble of robust
learning algorithms including XGBoost and Random Forests. A comprehensive evaluation on a large
and carefully curated ontology corpus shows that R2O2* outperforms all six component reasoners as
well as AutoFolio, a robust and strong algorithm selection system.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Ontologies are essential building blocks of the Semantic Web.
Expressive ontology languages OWL DL and OWL 2 DL are widely
used to represent many complex phenomena in a number of
application domains, including bioinformatics [1], software en-
gineering [2] and data management [3–6]. In these domains,
maintaining the logical correctness of ontologies (i.e. consistency
checking) and deducing implicit facts from ontologies (i.e. classi-
fication) are both important tasks that may need to be performed
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repeatedly. However, ontologies as expressed in common ontol-
ogy languages such as OWL [7] and OWL 2 [8] can be large,
complex, or both. The high worst-case complexity of these ontol-
ogy languages incurs high computational costs on the above core
reasoning problems. Checking the logical consistency of an ontol-
ogy in SHOIN (D), the description logic (DL) underlying OWL DL,
has NExpTime-complete worst-case complexity [7]. The complex-
ity of the same problem for SROIQ(D), the DL underlying OWL
2 DL, is even higher (2NexpTime-complete) [8].

The past decade has seen the development of highly opti-
mised inference algorithms for description logics, with (hyper)
tableau algorithms [9] being a leading exemplar. A number of
high-performance DL reasoners have been developed, includ-
ing FaCT++ [10], HermiT [11], Konclude [12], Pellet [13] and
TrOWL [14]. Despite the tremendous progress in both theoret-
ical research and practical implementation, the high theoretical
worst-case complexity results for OWL DL and OWL 2 DL still
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imply that core reasoning services may be computationally very
expensive. It has been shown empirically that reasoning on large
and complex ontologies in OWL 2 DL and OWL 2 EL (a less ex-
pressive profile that enjoys a PTime-complete complexity) can be
very time-consuming for state-of-the-art reasoners [15,16]. Such
high difficulty of reasoning and the fundamental role inference
plays in ontology-based applications make it highly desirable to
be able to accurately predict inference performance for ontologies
and reasoners.

It is well-known that worst-case complexity does not nec-
essarily provide useful insights into hardness of individual in-
stances [17,18]. In this context, it is noteworthy that reasoner
benchmarking has been conducted previously [15,19–22]. Except
the two ORE competitions, these works only compared inference
performance on a small set of ontologies. Moreover, they did
not attempt to correlate characteristics of ontologies with their
inference performance. Hence, they do not provide insight into
what makes inference difficult on a given ontology.

The robustness of ontology reasoners was recently investi-
gated [23], with a particular focus on reasoning efficiency. It was
observed that given a corpus of ontologies and a number of state-
of-the-art reasoners, it is highly likely that one of the reasoners
performs sufficiently well on any given ontology in the corpus.
However, this virtual best reasoner is only found a posteriori, and
the paper did not discuss how the best reasoner may be selected
automatically. It only stated that this task is not straightforward.

In our previous work we studied the characterisation of on-
tology’s design complexity using metrics [24], the prediction of
ontology classification efficiency [25,26], and proposed a meta-
reasoner R2O2 [27]. A meta-reasoner is one that combines other
(component) reasoners. Given an ontology, a meta-reasoner pre-
dicts the most efficient component reasoner and selects it to
carry out reasoning on that ontology. In this paper, we improve
upon our existing work and present a learning- and ranking-
based framework for the understanding of sources of ontology
reasoning hardness, prediction of ontology reasoning time, and
ultimately improving reasoning performance, under a unifying
meta-reasoning framework. The main contributions of this paper
can be summarised as follows:

• Accurate prediction models: A regression based prediction
model is learned for each of a number of state-of-the-art
OWL 2 DL reasoners. Evaluated with 10-fold cross validation,
all the models are highly accurate, with R2 (coefficient of
determination) values in [0.71, 0.95].

• A meta-reasoning framework: A novel meta-reasoning
framework, R2O2*, is developed. Building on our previous
work, R2O2* ranks and selects OWL reasoners with the
aim of determining the most efficient reasoner for an un-
known ontology. Compared with R2O2 [27], R2O2* utilises
a robust, state-of-the-art prediction model XGBoost [28]
based on gradient boosting [29] and an ensemble learn-
ing method stacking that combines multiple learning al-
gorithms to obtain better predictive performance. R2O2*
integrates state-of-the-art, sound and complete reasoners
that are both efficient and robust. Moreover, R2O2* also
incorporates ELK [30], an efficient reasoner for OWL 2 EL
ontologies, to further improve reasoning efficiency for a
wider variety of ontologies.

• Comprehensive evaluation: A comprehensive evaluation
on reasoning time has been conducted on a modern, large,
and carefully-curated ontology corpus from the ORE 2015
reasoner competition [22]. Our evaluation shows that R2O2*
outperforms all of the six OWL 2 DL component reason-
ers in the evaluation. The complete meta-reasoner variant,
R2O2*(all), also outperforms our previous meta-reasoners PR

and R2O2 [27]. More importantly, R2O2* outperforms Aut-
oFolio [31], a state-of-the-art portfolio-based algorithm se-
lection model that has demonstrated excellent performance
in a number of domains.

• Ontology metrics: Furthermore, we give full definitions of a
large suite of 91 ontology metrics that have been mentioned
but not formally defined in our previous work [24,26]. The
formal definitions provide a valuable insight into ontology
engineering and maintenance. We also identify the most
important metrics that affect ontology reasoning efficiency,
which further informs ontology engineering practices.

The R2O2* meta-reasoner, including components that calculate
metrics and train prediction models and rankers, has been made
freely available for wider dissemination.1

The rest of the paper is organised as follows. A brief overview
of background knowledge of ontologies and reasoning is given
in Section 2, followed by a discussion of closely-related work in
Section 3. The suite of all metrics that characterise the design
complexity of OWL ontologies are formally defined in Section 4.
The four variants of the meta-reasoner R2O2* are described in de-
tail in Section 5. Section 6 presents the evaluation framework for
building prediction models and the meta-reasoner. Our detailed
evaluation results and analysis are presented in Section 7. Lastly,
we conclude the paper and discuss future work in Section 8.

2. Ontologies and reasoning

Ontologies organise domain knowledge in a structured and
logical way. Semantic Web ontologies have been widely used in
many different areas as a medium for knowledge representation
and data integration. Common ontology languages such as OWL
1 [7] and OWL 2 [8] have formal semantics defined by Description
Logics (DL) [32], a family of logics created specifically for the pur-
pose of knowledge representation. In simple terms, knowledge in
DL is characterised by abstract concepts, which represent sets of
entities; properties or roles, which are binary relations between
entities; and individuals, which represent entities themselves.
Hence, a concept semantically represents a set of individuals.

The logical nature gives rise to reasoning support for ontolo-
gies. These, among others, include concept satisfiability checking,
concept subsumption checking, and classification. Concept satis-
fiability checking ensures that a concept can contain at least one
individual. Concept subsumption checks whether two concepts
have a sub-class relationship. Classification computes the sub-
sumption relationship between all pairs of (named) concepts in
an ontology.

For example, the following axioms in the DL syntax describe
some knowledge about pizzas. Axioms (1) and (2) state that
AmericanHot is a Pizza, and that it has some MozzarellaTopping .
Axiom (3) states that MozzarellaTopping is a CheeseTopping . Ax-
iom (4) states that CheeseyPizza is exactly those Pizza that has
some CheeseTopping . Through classification, the concept American
Hot is found to be a subclass of CheeseyPizza, as it is a Pizza,
and that it also has some MozzarellaTopping , which is a type of
CheeseyTopping .

AmericanHot ⊑ Pizza (1)

AmericanHot ⊑ ∃hasTopping.MozzarellaTopping (2)

MozzarellaTopping ⊑ CheeseTopping (3)

CheeseyPizza ≡ Pizza ⊓ ∃hasTopping.CheeseTopping (4)

1 https://github.com/liyuanfang/r2o2-star.
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A number of different DLs have been proposed over the years.
These DLs include different combinations of language constructs,
hence they have different expressive power. As a result, they
also have different worst-case complexity results for core rea-
soning tasks. A detailed introduction to the syntax, semantics
and complexity of these ontology languages can be found in the
literature [7,8].

Optimisation of ontology reasoning algorithms has been ag-
gressively pursued over the past decades, and a number of highly
optimised reasoners have been produced. These include sound
and complete reasoners such as FaCT++ [33], HermiT [34], Kon-
clude [12], and Pellet [13]; as well as the sound but incomplete
reasoner TrOWL [14]. Despite tremendous progress in optimi-
sation, there has been ample empirical evidence of the actual
hardness of real-world ontologies [15,25,35]. Therefore, efficient
reasoning over large and expressive ontologies remains a compu-
tationally challenging task. On the other hand, efficient reasoners
dedicated to less expressive profiles have also been developed.
ELK [30] is such a concurrent reasoner for ontologies in the OWL
2 EL profile.

3. Related work

Our related work is divided into the three categories according
to the focuses in this paper: ontology metrics, prediction models
for OWL reasoners, and algorithm selection and meta-reasoners.

Ontology metrics. There has been research on the development
of a series of metrics for analysing ontology complexity [36].
The pioneering work for identifying the proposed metrics in this
paper is found in [24] that introduced a suite of 8 metrics with
the aim of characterising different aspects of ontology design com-
plexity. Further, we identified an additional 19 metrics that can
measure different aspects of the size and structural characteristics
of an ontology [25] . These 27 metrics were used for predicting
discretised reasoning performance of reasoners. These 27 metrics
were combined with another set of metrics that capture ontology
complexity in [26]. In total, 91 metrics were collected and used
to build models for predicting absolute reasoning performance
of reasoners. In this work, we use these 91 metrics to build
prediction models and the meta-reasoner R2O2*. We also give
the full definitions of all the 91 metrics, which have not been
previously defined formally.

Prediction of reasoning performance. Ontology reasoning tasks are
hard decision problems that may go beyond NP-hard. For very
expressive DLs, ontology reasoning has a very high worst-case
complexity of 2NExpTime-complete [8]. For ontology reasoning
optimisation, the research community have been interested in
benchmarking of reasoner performance. In [15,16], a number of
modern reasoners were compared, and it was observed that the
reasoners exhibit significantly different performance characteris-
tics, thereby choosing an efficient reasoner for an ontology is a
non-trivial task.

In a previous work [25], we developed classifiers to predict
ontology classification performance categories for FaCT++, Her-
miT, Pellet and TrOWL, using ontology metrics as predictors [25].
The raw reasoning time is discretised into 5 increasingly large
categories. High prediction accuracy of over 80% is achieved for
all the 4 reasoners. Although highly accurate, the limitation of
this work is that only the hardness category is predicted, not
the actual reasoning time. To overcome this problem, we further
investigated regression-based prediction models [26] to predict
actual (or absolute) reasoning time of reasoners. In this approach,
regression analysis was applied to estimate a numeric response
variable (i.e. predicted reasoning time) from some predictor vari-
ables (i.e. 91 ontology metrics). These regression models were

built on a small number of ontologies (i.e. 451) for 6 reasoners
(FaCT++, HermiT, JFact, MORe, Pellet, TrOWL). These were imple-
mented in R.2 In this work, we improve upon these models by
using a modern, carefully curated dataset of 1920 ontologies from
the ORE 2015 reasoner competition [22], an additional robust
learning algorithm XGBoost [28], and an updated list of reasoners
that includes Konclude [12] and ELK [30] (for OWL 2 EL ontologies
only) and excludes TrOWL [14] as it is an approximate thus
incomplete reasoner.

Sazonau et al. [37] proposed a local approach to predicting
OWL reasoner efficiency. Small subsets of a given ontology are
repeatedly created, on which reasoning is performed. Reasoning
time data is then used to extrapolate a reasoner’s discretised rea-
soning time on the whole ontology. Principal component analysis
(PCA) was also employed to reduce the number of features (met-
rics). Evaluation conducted on 357 ontologies and 3 reasoners
shows that the local prediction method performs as well as the
global approach [25]. Moreover, they observed that the prediction
model based on one feature (number of axioms) has comparable
performance as that using a set of 57 features.

In a similar spirit, we investigated the prediction of reasoning
time of ABox-intensive OWL 2 EL ontologies [38] and energy
consumption of reasoning tasks on the Android platform [39].

Algorithm selection and meta-reasoner. Algorithm selection [40]
is the problem of selecting a well-performing algorithm for a
given problem instance. It has been successfully applied to ma-
chine learning, combinatorial optimisation and constraint satis-
faction problems [41,42]. SATzilla [43], for instance, a portfolio-
based SAT solver, has demonstrated higher efficiency over single
solvers. Compared to SAT, ontology languages are more expres-
sive with the inclusion of many more language constructs. As a
result, it is more challenging to accurately characterising ontology
complexity.

AutoFolio [31] is a state-of-the-art, general-purpose algorithm
selection system that performs automatic algorithm selection as
well as hyper-parameter tuning. In this paper we use AutoFolio
as a strong baseline to evaluate R2O2* in Section 7.2.3.

Chainsaw [44] first proposed the notion of a metareasoner
for OWL ontologies. Given a query (i.e. reasoning task) on an
ontology, Chainsaw constructs the smallest possible subset of
the ontology while guaranteeing completeness of answering the
query. This is achieved through the extraction of locality-based
modules [45] using atomic decomposition [46]. The size of the
extracted module is dependent on the reasoning task. For certain
tasks such as consistency checking, the entire ontology needs
to be extracted, hence not resulting in gains in efficiency. Also,
given the potentially substantial overhead of computing modules,
Chainsaw may not be competitive for simpler ontologies. As a
prototype reasoner, Chainsaw uses FaCT++ version 1.5.3 as the
delegate (i.e. component) reasoner. In the ORE 2015 ontology
reasoner competition [47], Chainsaw, Chainsaw did not perform
competitively against state-of-the-art reasoners: it was ranked
10/10 for the task of OWL DL classification and 11/13 for OWL
EL classification.

WSReasoner [48] is a hybrid reasoner designed for large and
complex ontologies in the description logic ALCHOI. Given an
ontology O, WSReasoner builds two approximate ontologies: a
weakened version Owk and a strengthened version Ostr , both of
which are in the less expressive (thus less complex) logic ALCH.
WSReasoner employs two component reasoners: a consequence-
based reasoner that classifies both Owk and Ostr . As reasoning over
Ostr may not be sound, WSReasoner also employs a tableau-based
reasoner to verify these results obtained on Ostr . In its evaluation

2 https://www.r-project.org/.
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on a number of well-known hard ontologies including DOLCE,
FMA and variants of Galen, WSReasoner outperforms tableau-
based reasoners FaCT++, HermiT, Pellet and the approximate,
consequence-based reasoner TrOWL.

In our preliminary work [27], we proposed a meta-reasoner,
R2O2, that makes use of regression-based prediction models of six
OWL 2 DL reasoners (i.e. FaCT++, HermiT, JFact, Konclude, MORe,
TrOWL). R2O2 takes two steps in the training phase. First, given
training ontologies characterised by a set of metrics [26] and their
reasoning time by the reasoners, R2O2 constructs a regression-
based prediction model for each of the six reasoners. Second,
given another set of training ontologies, a ranking matrix is gener-
ated using the prediction models. In the ranking matrix, each row
represents the values of the ontology metrics and a ranking of
the reasoners according to their predicted reasoning time. Several
rankers were trained on this ranking matrix to learn how ontol-
ogy metrics can be mapped to a relative ordering by the predicted
performance of the reasoners. In the actual reasoning (testing)
phase, given an unknown ontology, R2O2 makes performance pre-
dictions for the reasoners. It then ranks the reasoners according
to their predicted reasoning time. The rankings recommended by
the trained rankers are averaged to determine a unique rank of
each reasoner. The highest ranked reasoner is chosen to perform
the reasoning task for the unknown ontology. The evaluation on
R2O2 [27] shows that R2O2 outperforms all of the six state-of-
the-art OWL 2 DL reasoners, including Konclude [12], the most
efficient OWL 2 DL reasoner.

As a baseline model to evaluate R2O2 [27], we also constructed
a portfolio-based OWL reasoner PR, which always selects the
most efficient reasoner for any given ontology according to pre-
dicted reasoning time of all component reasoners.

R2O2 is different from PR in the following way. Instead of
choosing the best reasoner according to predicted reasoning time
of reasoners, as in PR, R2O2 selects a best possible reasoner from
an aggregation of the rankings of component reasoners.

Recently a multi-criteria meta-reasoner Multi-RakSOR [49,50]
has been proposed for reasoning about OWL 2 DL and EL on-
tologies. Multi-RakSOR incorporates two objectives in selecting
the best reasoner: reasoning efficiency and robustness. Efficiency
is measured by execution time. The robustness of a reasoner is
measured by four ordered termination states: (1) success (BS); (2)
unexpected (BU ), where the reasoning result is not expected; (3)
timeout (BT ), where the reasoner times out on an ontology; and
(4) halt (BH ), where the reasoner crashes. The ordering on these
states is then defined to be BS ≺ BU ≺ BT ≺ BH .

Multi-RakSOR encompasses two main components: (1) a multi
-label classifier that predicts the termination state of a reasoner,
and (2) a multi-target regression model that predicts the rank-
ing of the reasoners (with tie breaking) that respects the above
ordering.

A comprehensive evaluation of Multi-RakSOR is performed
on the ORE 2015 reasoner competition ontology dataset,3 which
we also use for evaluating R2O2*, and a set of 10 OWL 2 DL/EL
reasoners. The paper also describes an ‘‘upgraded’’ version of
Multi-RakSOR, dubbed Meta-RakSOR, that is able to handle both
OWL 2 DL (more expressive) and OWL 2 EL (less expressive)
ontologies. Meta-RakSOR is evaluated on the task of ontology
classification on two datasets: one for OWL 2 DL and for OWL
2 EL. The main evaluation results show that for both datasets,
Meta-RakSOR has the highest number of ontologies successfully
reasoned over. In terms of efficiency, for OWL 2 DL, Meta-RakSOR
demonstrates competitive performance (but not better) than the
best single reasoner Konclude. For OWL 2 EL, it is shown that

3 https://zenodo.org/record/50737.

Meta-RakSOR ranks 6th of the eleven reasoners evaluated, in
terms of average reasoning time.

The meta-reasoners/hybrid reasoners described so far are all
focussed on TBox reasoning (consistency checking or classifica-
tion). PAGOdA [51] is a hybrid system designed for the task of
query answering over ABox data. Employing an approach similar
to WSReasoner [48], PAGOdA uses an efficient reasoner, in this
case a Datalog reasoner, to compute a lower bound answer (sound
but possibly incomplete) and an upper bound answer (complete
but possibly unsound). When the two answers do not completely
coincide, PAGOdA extracts relevant subsets from the TBox and the
ABox are extracted, which are used to verify the answers by a
fully-fledged OWL 2 DL reasoner.

4. Ontology metrics

Metrics have been proposed to quantitatively measure the
quality, complexity, testability, and maintainability of ontolo-
gies. Inspired by software metrics [52], we proposed a set of
91 metrics [24–26] for characterising the design complexity of
ontologies. However, the definition of many of these metrics were
not formally given. In this section, we give a detailed account
of this suite of 91 metrics that comprehensively characterise
ontologies in terms of their size and syntactic and structural com-
plexity. These metrics serve as distinctive features for learning
ontology reasoning prediction models and building the proposed
meta-reasoning framework R2O2*.

These metrics are organised by what they characterise: (1) the
ontology itself, (2) classes, (3) anonymous class expressions, and (4)
properties. These metrics are proposed with efficient computation
as a key consideration. In the calculation of metrics, we adopt a
graph-based view of ontologies [24] to capture the complexity of
ontologies and generate a set of metrics.

The subsequent subsections present details of the metrics.
Note that a metric name without the percent sign (%) is a count,
and one with it is a ratio. A count metric shows how a component
of an ontology has impact on the reasoning performance by its
occurrences. A ratio metric is used to explain the relationship
between such a component with respect to the overall structure
of the ontology. Intuitively, a count/ratio metric represents the
absolute/relative value of a metric of an ontology, respectively.
We note that all metrics are computed on the asserted ontology
hierarchy. In other words, no reasoning is performed prior to
computing these ontologies.

4.1. Ontology-level metrics (ONT)

The 6 ONT metrics were previously defined [24]. Here, we
define an additional 18 ONT metrics that have not been described
previously. They measure the overall size and complexity of an
ontology.

IND counts the number of (named or anonymous) individuals
in an ontology. The remaining 17 metrics are collected by observ-
ing the structure (i.e. language constructs) of a given ontology.

GCI/HGCI: These metrics measure the number of general con-
cept inclusion (GCI) axioms and hidden GCI (HGCI) axioms, re-
spectively. GCI counts the number of subsumption axioms whose
subclass is a complex concept (anonymous class expression).
HGCI counts the number of (named) concepts that appear as a
subclass in some subsumption axioms as well as in some equiv-
alent classes axioms. In general, the presence of GCI axioms may
increase reasoning complexity as they may introduce nondeter-
minism [53]. A GCI axiom is hidden when a named class is the
LHS of a subclass axiom as well as an equivalent class axiom.

Either an equivalent class axiom or a subclass axiom where
the left-hand side of the subclass axiom is a named class.

https://zenodo.org/record/50737
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ESUB%/DSUB%/CSUB%: These metrics measure ratios of sub-
class axioms that contain (possibly nested) specific types of class
expressions, including those that are nested, and all subclass
axioms. For these metrics, the subclasses and superclasses are
flattened, and an axiom is considered to contain a specific type
of expressions iff one of the flattened expressions is of that type.

Respectively, ESUB%, DSUB% and CSUB% calculate the ratio
of subclass axioms that contain existential restrictions (∃R. ),
disjunctions ( ⊔ ), and conjunctions ( ⊓ ). Additionally
CSUB% requires that at least one of the conjuncts in the subclass
is an anonymous class expression. Existential restrictions (ESUB%)
and disjunctions (DSUB%) could generate AND-branching and OR-
branching, respectively, during the reasoning process. AND- and
OR-branching are major sources of complexity for tableau-based
algorithms [54], hence their presence may negatively correlate
with performance. For the CSUB% metric, anonymous conjuncts in
the subclass can generate more axioms during the normalisation
process, hence it may increase workload for a reasoner.

ELCLS%/ELAX%: These two metrics measure the ratios of
(nested) class expressions (ELCLS%) and axioms (ELAX%), respec-
tively, in the OWL 2 EL profile, a sublanguage of OWL that is based
on EL [55], a description logic with efficient PTime-complete
algorithms. Our intuition is that as reasoning in the EL profile is
in general easier, a reasoner such as MORe [56] that is able to
delegate EL reasoning to an efficient EL reasoner could be more
efficient with ontologies with a large percentage of EL expressions
and axioms.

HLC/HLC%: These metrics are the count (HLC) and ratio (HLC%)
of hard language constructs, which include disjunctions, transitive
properties, inverse properties and property chains, in superclass
expressions. These language constructs can potentially negatively
influence the performance of ontology reasoners.

SUBCECHN/SUPCECHN: These metrics are the count of top-
level class expressions containing chained (a sequence of) ex-
istential restrictions (i.e., ∃R.C in the DL syntax) as a subclass
(SUBCECHN) or a superclass (SUPCECHN). These metrics measure
the impact of ∃R.C expressions on the performance of reasoning
as they can potentially slow down the reasoning process by
increasing the search space.

For example, suppose an ontology contains two subsumption
axioms: (1) ∃R.(A ⊓ ∃R.(B ⊓ ∃P .C)) ⊑ E, and (2) ∃R.(D ⊓ ∃R.(F ⊓

∃P .G)) ⊑ H , where R, P represent properties and A, . . . ,H rep-
resent classes. For this ontology, SUBCECHN = 2 because axiom
(1)’s subclass is a chained class expression containing existential
restriction ∃R.(A⊓∃R.(B⊓∃P .C)) and axiom (2)’s subclass is also a
chained existential restriction ∃R.(D⊓∃R.(F ⊓∃P .G)). On the other
hand, there is no chained class expressions containing existential
restrictions as the superclass hence SUPCECHN = 0.

DSUBCECHN/DSUPCECHN: These count metrics calculate, in
a depth-first manner, the maximum depth of nested class ex-
pressions containing existential restrictions as a subclass (DSUB-
CECHN) or a superclass (DSUPCECHN), with the intuition that
deeper subclass chains may increase reasoning time. For exam-
ple, suppose an ontology contains ∃R.(A ⊓ ∃R.(B ⊓ ∃P .C)) ⊑

E,D ⊓ ∃R.(F ⊓ ∃P .G) ⊑ H , where R, P represent properties and
A, B, C,D, E, F ,G,H represent classes. DSUBCECHN is 3 because
the depth of nested class expressions containing existential re-
strictions in the first axiom ∃R.(A⊓∃R.(B⊓∃P .C)) ⊑ E is 3 and that
of the second axiom D⊓∃R.(F ⊓∃P .G) ⊑ H is 2. In addition, there
is no nested class expression containing existential restrictions in
the superclass, hence DSUPCECHN is 0.

SUBCCHN/SUPCCHN: These metrics represent the number of
class expressions containing chained conjunction expression as
a subclass/superclass. For tableau-based algorithms, conjunctions
of complex concepts in a subclass may not be easily normalised
for some reasoners. Hence a subclass expression containing many
complex class expressions may slow down the reasoning process.

DSUBCCHN/DSUPDCHN: These metrics represent maximum
depth of nesting of class expressions containing disjunction ex-
pressions as a subclass/superclass. The idea of these metrics is
similar to the metrics DSUBCECHN/DSUPCECHN.

In total there are 24 ONT metrics, which are summarised in
Table A.12 in the Appendix.

4.2. Class-level metrics (CLS)

The CLS metrics capture characteristics of classes, which are
first-class citizens in OWL ontologies. Five functions, NOC (num-
ber of children), NOP (number of parents), DIT (depth of inher-
itance tree), CID (class in-degree), and COD (class out-degree),
were defined previously [24]. Each of these functions returns,
for a (named or possibly nested anonymous) class expression
in an ontology, a count value respectively. For a given class C ,
NOC(C) and NOP(C) return the number of direct subclasses and
superclasses of C in the ontology, respectively. DIT(C) returns
the longest path from C to ⊤, the root class, in a depth-first
manner. CID(C) and COD(C) calculate, respectively, the number
of incoming and outgoing edges of C .

For each of these five functions, we identify three metrics:
the total, the average, and the maximum values across all classes
for a given ontology. For example for NOC, the total NOC (tNOC)
is calculated by summing the NOC value for all classes in an
ontology, and the average NOC (aNOC) is tNOC divided by the
total number of class expressions. Similarly, the maximum NOC
(mNOC) is the maximum number of children among all classes.

Thus, in total, 15 CLS metrics are identified, which are shown
in Table A.13 in the Appendix.

4.3. Anonymous class expression metrics (ACE)

The ACE metrics are an important ingredient in building ex-
pressive classes. Different types of anonymous class expressions
can have different impact on reasoning performance. The 9 ACE
count metrics have been previously defined [25], one for each
different type of (possibly nested) anonymous class expressions
(enumerations, negations, conjunctions, disjunctions, universal
restrictions, existential restrictions, and min/max/exact cardinal-
ity restrictions). We further define two additional ACE count
metrics that represent the number of value restrictions (VALUE,
for ∃R.{a}, where a is an individual) and self references (SELF,
for ∃R.self). We also propose their corresponding ratio metrics
that measure the percentage of each count ACE metric over all
(possibly nested) anonymous class expressions.

Hence in total there are 22 ACE metrics, shown in Table A.14
in the Appendix.

4.4. Property metrics (PRO)

Additional pairs of count and ratio metrics are defined: ASYM/
ASYM% (asymmetric properties), REFLE/REFLE% (reflective prop-
erties), IRREF/IRREF% (irreflective properties), and CHN/CHN%
(property chains).

Similarly, the 6 of the 8 existing count PRO metrics [25] are
augmented with their corresponding ratio metrics. For example,
the DTP metric counts the number of datatype properties. The
metric DTP% records the ratio between the number of datatype
properties and the total number of properties. These 6 are: OBP
(object properties), DTP (datatype properties), FUN (functional
properties), SYM (symmetric properties), TRN (transitive prop-
erties), and IFUN (inverse functional properties). Furthermore,
four count metrics are defined to record the number of some
property axioms, including SUBP (subproperties), DISP (disjoint
properties), DOMN (domain), and RANG (range).

Finally, four additional metrics are defined to measure the
usage of properties in an ontology.
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• ELPROP%: This metric measures the ratio, of all property
axioms, the number of property axioms allowed in the OWL
2 EL profile, which include subproperty axioms, equivalent
property axioms, transitive axioms, reflexive axioms, do-
main/range axioms, and functional data property axioms.
Intuitively, the higher the ELPROP% of an ontology is, the
more efficient its reasoning may be.

• IHR, IIR, ITR: These metrics measure the count of class
axioms (e.g., subclass axioms and class/property assertions)
that make use of some property in some property hierar-
chy (IHR), inverse properties (IIR), and transitive properties
(ITR). The intuition is that the more these types of properties
are used in class axioms, the more difficult reasoning may
be for this ontology.

There are in total 30 PRO properties as summarised in
Table A.15.

5. Meta-reasoning models

In this section, as our major contributions of this paper, we
propose our meta-reasoning framework R2O2* and its four dif-
ferent meta-reasoning models (simply meta-reasoners). Each meta-
reasoner recommends the most efficient reasoner for unknown
ontologies using different machine learning techniques. We first
introduce basic notations we use in the paper. Then, we present
the details of the four meta-reasoners with their learning objec-
tives in the training phase and their utilisation in the recommen-
dation (or testing) phase.

5.1. Notation definition

The following basic notations are used in the paper.

• Let R = {r1, . . . , rn} be a set of n reasoners, also called
component reasoners in the paper.

• Let R̂ = {r̂1, . . . , r̂n} be a set of n prediction models such that
r̂i predicts the reasoning time of ri.

• Let OM = {om1, . . . , omq} be a set of q ontology metrics.
• Let O = {o1, . . . , oh} be a set of h ontologies that can be

reasoned about by at least one reasoner in R without timing
out or errors. Each ontology in O is represented using its
values of ontology metrics OM in this paper.

• Given a reasoner r and an ontology o, let θ (r, o) represent
the actual reasoning time of r for o for the task of ontology
classification. Similarly, let θ (r̂, o) represent the reasoning
time predicted by r̂ for o for the same task.

• Two partitioned subsets Otr and Ote are drawn from O for
training and testing the proposed meta-reasoners, respec-
tively.

5.2. Details of the meta-reasoners

In the following, we present the details of each of our four
meta-reasoners. For each reasoner, we describe its learning ob-
jective and how to build it in detail. All these meta-reasoners are
built on the training dataset Otr ⊂ O.

The first meta-reasoner, R2O2*(pt), directly trains prediction
models R̂ of R on the training data Otr , and uses the predicted
reasoning time that has been estimated by R̂ to find the most
efficient reasoners for unknown ontologies. The underlying idea is
to choose a reasoner r , whose predicted reasoning time estimated
by r̂ is the most efficient among R̂, as the most efficient reasoner
for an unknown ontology. The second meta-reasoner, R2O2*(rk),
trains a ranking algorithm to learn the rankings of the reasoners
in R according to the actual reasoning time of the training data

Otr , and uses it to predict the best ranked reasoners for unknown
ontologies. The third meta-reasoner, R2O2*(mc), trains a classifier
that learns the most efficient reasoner on Otr , and uses it to
directly predict the most efficient reasoners for unknown ontolo-
gies. The forth meta-reasoner, R2O2*(all), is an ensemble classifier
that uses the predictions of the above three meta-reasoners.

5.2.1. Meta-reasoner based on the direct use of predicted reasoning
time: R2O2*(pt)

The meta-reasoner R2O2*(pt) aims to recommend the most
efficient reasoners for unknown ontologies based on the direct use
of the predicted reasoning time of all reasoners in R. Therefore, for
all reasoners in R, building their corresponding prediction models
R̂ is essential prior to making use of R2O2*(pt) for determining such
most efficient reasoners. R2O2*(pt) is similar to the non-ranking
portfolio reasoner PR described in our preliminary work [27] in
that it leverages predicted reasoning time of R̂. The difference is
that R2O2*(pt) uses an ensemble regression model instead of using
a random forest regression algorithm as PR [27]. Also, R2O2*(pt)
incorporates the average rankings of the reasoners on the training
data when there are more than two reasoners that were chosen
as the most efficient (i.e. their predicted reasoning time is the
same), while PR chooses one in random. The details of resolving
a tie-breaking method R2O2*(pt) is explained below.

Consequently, the effectiveness of R2O2*(pt) relies mainly on
the accuracy of the prediction models in R̂. In order to build such
prediction models, we use stacking [57], an ensemble learning
technique to combine multiple classification (or regression) mod-
els in which (1) base learners (or regression models) (or level-0
models) are trained on the training data Otr , and (2) the out-
puts of the base learners are combined using a meta-learner (or
meta-regression models) (level-1 model), in our context. More
specifically, for each reasoner, each learner is trained to learn
a mapping function from the values of ontology metrics on the
training data Otr to their actual reasoning time. Then, a meta-
learner is trained to learn a mapping function from the predicted
outputs of Otr , which have been estimated by the base learners,
to actual reasoning time.

Here, our aim is to use the decisions of the individual base
learners that employ different learning criteria, and to combine
their decisions to outperform each individual base learner using
a meta-learner.

More formally, to build each prediction model r̂k ∈ R̂ for
reasoner rk ∈ R, we represent each ontology oi ∈ Otr as follows:

oi = omi,1, . . . , omi,q  
ontology metrics

, θ (rk, oi)  
actual reasoning time

(5)

where omi,j is the value of the jth ontology metric omj of ontol-
ogy oi, and θ (rk, oi) denotes the actual reasoning time of rk on
ontology oi.

Using the above representation scheme, for each reasoner, we
train k base learners (level-0 models) on Otr . Then, we generate
level-1 data obtained from the predictions of the k base learner
over the instances in Otr . The level-1 data have k attributes whose
values are the predictions (i.e. predicted time) of the k base
learners for every instance in Otr . Thus, each training example for
a meta-learner (level-1 model) will be composed of k attributes
(e.g. k predictions from the k base learners) and the target which
is the actual reasoning time for every instance in Otr . Once the
level-1 data have been built from all instances in Otr , any learning
regression models can be used to generate the meta-learner. In
this paper we choose k = 2.

In this paper, we use two robust base learners: (1) the random
forest regression algorithm and (2) the XGBoost (eXtreme Gradient
Boosting) algorithm [28]:
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• Random forest regression algorithm: As a base learner,
we build a regression model using random forest regression
algorithm, an efficient and robust learning model, which
has produced good predictive performance in our previous
work [26]. In our context, the random forest model com-
bines a number of decision trees, each of which is trained
using a subset of training ontologies, to build a prediction
model for a given reasoner.

• XGBoost: As another base learner, we use the state-of-the-
art learning algorithm, XGBoost [28], which has recently
shown dominant performance on a number of Kaggle com-
petitions for structured or tabular data. It is an implementa-
tion of gradient boosted decision trees designed for achiev-
ing better computational efficiency and prediction perfor-
mance.

We again consider random forest and XGBoost as candidates
of a meta-learner (level-1 model) due to their strong predictive
performance. These level-1 candidates are denoted by meta-RF
and meta-XGBoost in this paper. As can be seen in Section 7.1.1,
we eventually choose meta-XGBoost as our meta-learner given
its best overall performance.

Once we train the meta-regression model on Otr , given an
unknown ontology in the testing data Ote, the meta-reasoner
R2O2*(pt) will recommend a reasoner whose predicted reasoning
time is the fastest among all of the predictions of the prediction
models in R̂ as the most efficient reasoner.

If more than two reasoners are chosen as the most efficient,
a tie-breaking method is also applied to select one of them.
This method takes into consideration the precision at 1 (P@1) of
the reasoners in R that are measured on the training data Otr .
In this context, for each reasoner in R, its P@1 is measured by
the proportion that the reasoner is the most efficient across all
instances in Otr . Our tie-breaking method chooses the reasoner
with the highest P@1. This tie-breaking method is applied to all
the other meta-reasoners in our R2O2*.

5.2.2. Meta-reasoner based on ranking algorithm: R2O2*(rk)
R2O2*(rk) is a meta-reasoner that learns the rankings of the rea-

soners in R. During the training phase, it trains a ranking algorithm
(simply ranker) that learns the rankings of the reasoners on Otr
in terms of their reasoning time. Once the ranker is trained, given
an unknown ontology in Ote, R2O2*(rk) ranks and recommends the
most efficient reasoner for that ontology.

R2O2*(rk) follows a similar spirit of R2O2 [27] in that R2O2*(rk)
uses a ranking matrix and uses a ranker. The difference is that
R2O2*(rk) uses a single ranker, rather than aggregating multiple
rankers as R2O2, to recommend the most efficient reasoner for
an unknown ontology. Given a pool of rankers using different
criteria for learning, we have chosen the one with the best rank-
ing performance through our experiments which will be further
discussed in Section 7.1.1.

Given the training data Otr , we generate a ranking matrix,
where each row represents the values of ontology metrics and
the rankings of reasoners R according to their actual reasoning
time. Then, a ranker is trained on this matrix to learn how the
characteristics of the ontologies in Otr can be optimally mapped
to the relative ordering of the reasoning performance of the
reasoners in R. Initially, we build an |Otr |× (q+n) data matrix Md
(recall that q = |OM|, n = |R| = |R̂|), where row i represents an
ontology oi ∈ Otr and the actual reasoning time of the reasoners
in R for oi:

oi = omi,1, . . . , omi,q  
ontology metrics

, θ (r1, oi), . . . , θ (rn, oi)  
actual reasoning time

, (6)

where omi,j is the value of the jth ontology metric omj of oi, and
θ (rs, oi) denotes rs’s actual reasoning time for oi. From Md, we

build the corresponding |Otr | × (q+ n) ranking matrix Mr, where
row i is represented as:

oi = omi,1, . . . , omi,q  
ontology metrics

, π (r1, oi), . . . , π (rn, oi)  
ranking of reasoners

, (7)

where π (rs, oi) denotes the rank of rs[1..n] ∈ R for oi deter-
mined by θ (rs, oi). On Mr, the more efficient a reasoner is, the
higher ranked it is (the smaller the rank number). To illustrate
this, suppose there are 3 reasoners {r1, r2, r3}, and their actual
reasoning time for an ontology oi is 100 s, 90 s, and 10 s, re-
spectively, i.e., (θ (r1, oi), θ (r2, oi), θ (r3, oi)) = (100 s, 90 s, 10 s).
Thus, the ranking is (π (r1, oi), π (r2, oi), π (r3, oi)) = (3, 2, 1). If
the reasoning time is (10 s,10 s,100 s) instead, the ranking will
be (1, 1, 3).

In summary, the goal is to learn rankings of all reasoners in
R on the ranking matrix Mr, and to predict a ranking of the
reasoners for an unseen ontology. The top-ranked reasoner will
be chosen by the meta-reasoner R2O2*(rk) to be the most efficient
reasoner to reason over the ontology. Comparing to R2O2*(pt), the
main feature of R2O2*(rk) stems from that it is built on the ranking
matrix that uses rankings of the reasoners in R, rather than the
direct use of the predicted reasoning time estimated from R̂.

5.2.3. Meta-reasoner based on multi-class classification: R2O2*(mc)
R2O2*(mc) formulates the learning problem into a multi-class

classification problem, where its goal is to classify an ontology
with one of the reasoners that is able to reason about the ontology
the most efficiently. During the training phase, R2O2*(mc) learns
the most efficient reasoner for each ontology on the training data
Otr . The most efficient reasoner is determined by means of the
actual reasoning time of the reasoners in R, meaning that the
fastest reasoner is chosen as the most efficient reasoner.

More formally, to build R2O2*(mc), we represent each ontology
oi ∈ Otr as follows:

oi = omi,1, . . . , omi,q  
ontology metrics

, γi
the most efficient reasoner

(8)

where omi,j is the value of the jth ontology metric omj of oi, and
γi denotes the actually most efficient reasoner for oi. If there
is an ontology oi ∈ Otr that has k-reasoners (where k > 1)
that show the equivalently most efficient reasoning time, we
generate k instances with k most efficient reasoners for oi. For
example, given on ontology oi, suppose that there are two most
efficient reasoners: Konclude and Pellet. We then generate two
instances for oi as follows: (1): ‘‘omi,1, . . . , omi,q,Konclude’’, and
(2) ‘‘omi,1, . . . , omi,q, Pellet’’.

Using the above representation scheme, we train a classifier on
the training data Otr . In our experiments, we have considered two
classifiers: (1) random forest algorithm and (2) XGBoost, because
of their robust classification performance as in the case of the
meta-reasoner R2O2*(pt). Based on our cross-validation on Otr , we
eventually choose XGBoost which will be further discussed in
Section 7.1.1.

In comparison with the meta-reasoner R2O2*(pt), R2O2*(mc)
does not directly use the predicted reasoning time of the rea-
soners in R, that is, it does not rely on R̂. Rather it learns which
reasoners have been the most efficient reasoners for ontologies
in the training data Otr . The learning goal of R2O2*(mc) is similar
to the meta-reasoner R2O2*(rk) in that its learning is based on the
ranks of the reasoners in R on the training data Otr . However,
R2O2*(mc) differs in that it learns the most efficient reasoner only,
not the rankings of all reasoners in R as R2O2*(rk).
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5.2.4. Ensemble meta-reasoner: R2O2*(all)
R2O2*(all) is a stacking classifier that learns from the predic-

tions of the above three meta-reasoners: (1) R2O2*(pt) that directly
uses the predicted reasoning time of reasoners for the training
set Otr , (2) R2O2*(rk) that learns the rankings of reasoners by
means of their actual reasoning time for Otr , and (3) R2O2*(mc) that
learns the most efficient reasoners for ontologies in Otr . In other
words, in R2O2*(all), those three meta-reasoners can be seen as
base classifiers (i.e. level-0 models), and R2O2*(all) learns a meta-
classifier (i.e. level-1 model) from the predictions of the base
classifiers.

Thus, R2O2*(all) trains a meta-classifier on the training data Otr ,
where each ontology oi ∈ Otr is represented as follows:

oi = R2O2*(pt)(oi), R2O2*(rk)(oi), R2O2*(mc)(oi)  
predicted reasoners of the meta-reasoners

, γi
the most efficient reasoner

(9)

where R2O2*(pt) (oi), R2O2*(rk) (oi) and R2O2*(mc) (oi) are the pre-
dicted most efficient reasoners of R2O2*(pt), R2O2*(rk), R2O2*(mc),
respectively, for oi. As in Eq. (8), γi denotes the actually most
efficient reasoner for oi.

As candidates for a meta-classifier, we also consider the same
learning algorithms used to built the meta-reasoner R2O2*(pt)
because of the same reason: their proven, robust predictive per-
formance: (1) random forest algorithm and (2) XGBoost. The
one with the better performance from these two candidates is
chosen, where the performance is measured via cross-validation
on the training data Otr . Eventually, XGBoost is chosen as our
meta-classifier which will be presented in Section 7.1.1.

Thus, R2O2*(all) trains the meta-classifier that learns relation-
ships between the predicted reasoners of the previous three
meta-reasoners and the actually most efficient reasoners on the
training data Otr , and then make predictions about the most effi-
cient reasoners for unknown reasoners for the testing ontologies
Ote.

5.2.5. Meta-reasoners with ELK
In the previous sections, we have presented the four different

meta-reasoners in R2O2*. Note that all of these meta-reasoners
utilise a number of high-performance DL reasoners. Here, an
interesting question is whether incorporating an EL reasoner
into the meta-reasoners, such as ELK [30], can further improve
reasoning efficiency for the less complex OWL 2 EL ontologies.

To address this question, we augment our meta-reasoners
to incorporate an EL reasoner, ELK, that is designed to support
the less expressive OWL 2 EL profile. ELK does not support rea-
soning over non-EL ontologies. Thus, the meta-reasoners only
incorporate ELK when predicting the most efficient reasoners for
unknown OWL 2 EL ontologies.

First, we train a prediction model for ELK on the training data
Otr following the steps presented in Section 5.2.1. Then, given
an ontology o ∈ Ote whose reasoning time is unknown, each
meta-reasoner (representatively denoted by R2O2*) is extended
by taking the following further steps to find the most efficient
reasoner to reason about o:

1. Check whether o is an EL ontology or not.
2. If o is an EL ontology, compare the predicted reasoning time

and the most efficient reasoner determined by R2O2*. Then,
we choose the fastest one as the most efficient reasoner.
Formally,

γ̂ (o) = argmin
r̂i∈R2O2*,r̂elk

θ (r̂i, o) (10)

where γ̂ (o) is the most efficient reasoner for o determined
eventually; θ (r̂i, o) is the predicted reasoning time of the
reasoner ri for o; and r̂elk is the prediction model of ELK.

3. If o is not an EL ontology, follow the recommendation of
R2O2* not considering relk.

Thus, in our extension for EL ontologies, for each meta-
reasoner, the main idea is to simply incorporate predicted rea-
soning time of ELK and the most efficient reasoner determined by
the meta-reasoner, to compare their reasoning time, and finally to
recommend the one with the most efficient predicted reasoning
time.

Here we summarise the main differences between our meta-
reasoning framework R2O2* and our preliminary meta-reasoner
R2O2 and the portfolio-based meta-reasoner PR, which were de-
scribed in detail in Section 3.

1. As a framework (but not individual meta-reasoners), R2O2*
adapts and incorporates both R2O2 (as R2O2*(rk)) and PR (as
R2O2*(pt)).

2. R2O2* incorporates more advanced prediction models (Ran-
dom Forests and XGBoost) through ensembling.

3. R2O2* generates a ranking matrix using the actual reason-
ing time of the component reasoners. On the other hand,
R2O2 built a ranking matrix using the predicted reasoning
time of the reasoners, where such time was estimated by
prediction models.

4. R2O2* incorporates a single best ranker instead of using an
aggregation of multiple rankers as R2O2. The single best
ranker is determined empirically through cross-validation
on the training data.

5. R2O2* invokes the efficient reasoner ELK [30] directly for
OWL 2 EL ontologies.

6. R2O2* is built using a different mix of component reasoners
that includes Pellet (which R2O2 does not include) but
excludes TrOWL, as TrOWL is an approximate, therefore
incomplete reasoner.

7. Finally, R2O2* is built and evaluated using a more modern
set of ontologies and more recent versions of reasoners.

In the following sections, we discuss our evaluation frame-
work and results that compare the performance of all the pro-
posed meta-reasoners (with and without ELK) using the ORE 2015
competition corpus [22].

6. Evaluation framework

In this section, we describe the evaluation framework used for
evaluating the proposed prediction models and meta-reasoners,
including details of the reasoners, ontologies and the evaluation
environment. The notations used in this section follow those
defined in Section 5.1.

Reasoners: Six state-of-the art OWL 2 DL reasoners that par-
ticipated in ORE the 2015 reasoner competition [22] are used
as component reasoners (simply reasoners)4: FaCT++ [10], Her-
miT [34], JFact,5 Konclude [12], MORe [56] (with HermiT as the
underlying OWL 2 DL reasoner), and Pellet [13]. Besides these
six OWL DL reasoners, we also incorporate ELK [30], the efficient
reasoner for the less expressive OWL EL profile. The versions of
the reasoners are the same as those in ORE 2015. As described in
Section 5, we build a prediction model for each reasoner, which
is one of the key components in the meta-reasoner framework
R2O2*.

4 Chainsaw [44] and Racer [58] (two OWL 2 DL reasoners that participated
in ORE 2015) are excluded due to reasoning errors in an excessive number of
ontologies.
5 http://jfact.sourceforge.net.

http://jfact.sourceforge.net
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Target Reasoning Task: For the ontology reasoning task, we
choose ontology classification. The actual reasoning time (wall-
time) of each ontology in the dataset was measured on a high-
performance server running CentOS Linux 7.4 (Core) and Java 1.8
on single-core Intel Gold 6140 each at 2.3 GHz, with a maximum
of 10 GB memory allocated to the reasoner. A timeout of 30 min
of wall-time is imposed on each (reasoner, ontology) pair.

To ensure consistency of the evaluation across reasoners, the
ORE 2015 competition framework6 is used to invoke all reasoners
and record their reasoning time. For each ontology, the com-
petition framework converts it into the OWL functional syntax
(FSS), invokes reasoners for classification using a Bash shell script,
and records reasoning time using the GNU time command. We
follow the framework and include ontology loading time as part
of classification time.

Ontologies: We collected all 1920 ontologies from the ORE
2015 reasoner competition [22].7 Prior to building our proposed
meta-reasoners, we performed the three preprocessing steps on
the 1920 ontologies, following the steps in [26,27]. The aim of
these steps is to remove duplicate ontologies that may exist in the
given ontology collection, normalise their metric values to avoid
the high skewness of values of ontology metrics OM , and remove
ontology metrics that may influence learning a prediction model
with lower prediction accuracy:

1. Cleansing: Since the given ontology collection has been
obtained from multiple repositories, it may contain du-
plicates. All but one ontology is removed from each set
of ontologies with duplicate metric values. After removing
duplicates, 1760 ontologies remained.

2. Normalisation: In the given 1760 ontology collection, val-
ues of some of the metrics span a large range and are very
skewed as discussed in [26]. We apply a commonly-used
log-transformation on the metric values of the ontologies
that are greater than 10. The log-transformation is also
performed on reasoning time.

3. Metric removal: It is a widely used practice to remove
features that have near-zero variance values and features
that are highly correlated (with respect to the dataset). In
this paper we follow this practice. Following our previous
work [26,27], we consider two metrics with correlation
coefficients above 0.9 to be highly correlated. To observe
a better generalised distribution of these metrics, we mea-
sure their correlation on a larger ontology collection, the
one used in the ORE 2014 reasoner competition [21]. It
contains 16,555 ontologies, which are split into four groups
by percentiles of file size. Ontologies are randomly sampled
from within these groups. This is to ensure that files of
different sizes are sufficiently represented. Given correla-
tion calculated from this ontology collection, we remove
all but 29 metrics: 12 ONT metrics (SOV, ENR, EOG, CYC,
RCH, IND, ESUB%, ELCLS%, ELAX%, HLC, HLC%, SUPCECHN); 7
CLS metrics (tNOC, aNOC, aCID, mCID, tCOD, aCOD, aNOP);
4 ACE metrics (CONJ%, UF%, EF, EF%); and 6 PRO metrics
(OBP%, DTP%, FUN%, CHN%, ELPROP%, IHR).

Finally, as our ontology collection (O), we used 1760 ontolo-
gies, where each ontology is represented by the 29 metrics and
the metric values are log-scaled.

Table 1 shows, for each reasoner, the total number of on-
tologies it successfully handled, that result in an error, and that
time out, and brief statistics of reasoning time (in seconds, and
excluding those ontologies that time out). It can be observed

6 https://github.com/andreas-steigmiller/ore-competition-framework.
7 http://owl.cs.manchester.ac.uk/publications/supporting-material/ore-2015-

report/.

Table 1
A summary of statistics of the deduplicated ORE 2015 competition dataset
containing a total of 1760 unique ontologies. Note the reasoning time is
measured in seconds and without considering timeout ontologies.
Reasoner No. of ontologies Reasoning time (s)

Successful Error Timeout Min Max Median Mean

FaCT++ 1461 109 190 0.53 1638.6 1.4 72.4
HermiT 1658 51 51 0.70 1622.4 3.6 35.8
JFact 1292 161 307 1.03 1788.6 3.4 72.8
Konclude 1737 8 15 0.03 1087.2 0.3 3.7
MORe 1706 18 36 2.00 1684.5 4.5 87.1
Pellet 1477 114 169 1.01 1773.9 3.5 39.5

that the reasoning time spans a large range for all the reasoners,
and that Konclude is the most efficient as well as most robust
reasoner (the least number of error and timeout ontologies).
In total, 1269 ontologies (excluding timeout ontologies) were
reasoned about successfully (no error, no timeout) by all the
six reasoners, and 1390 ontologies did not result in a runtime
error (timeout ontologies are included in this case). Note that
timeout ontologies are used to evaluate our meta-reasoners in
one set of experiments. Fig. 1 in Section 7 depicts the performance
characteristics of the component reasoners in more details in
violin plots. Of the 1760 ontologies, 761 are in the OWL 2 EL
profile. Hence, we performed classification on these ontologies
using ELK.

Evaluation method: We evaluate our meta-reasoners with
the state-of-the-art algorithm selection framework AutoFolio [31]
that is configured to minimise runtime. As discussed earlier in
Section 5, meta-reasoners PR and R2O2 described in our previ-
ous work [27] are similar to R2O2*(pt) and R2O2*(rk), respectively.
Hence this comparison also assesses the performance of R2O2*(all)
against our previous models. We also attempted to evaluate
our meta-reasoners against a recently proposed multi-criteria
meta-reasoner Meta-RakSOR [49,50], which has dual optimisa-
tion objectives of reasoning correctness as well as efficiency.
However, we are unable to evaluate Meta-RakSOR due to two
reasons. Firstly, for the OWL 2 DL classification task, Meta-RakSOR
incorporates eight component reasoners but our meta-reasoners
only incorporates six. Among the two reasoners that are not
considered by our meta-reasoners, TrOWL [14], which is an ap-
proximate hence incomplete reasoner, and RACER [59], which
did not execute properly on our evaluation hardware. Secondly,
even though Meta-RakSOR has released source for running the
meta-reasoner,8 it however does not include the source code of
Meta-RakSOR itself. Therefore we are unable to modify it and
compare with it. However, as can be seen from Table 1 of Meta-
RakSOR [50], Meta-RakSOR does not outperform Konclude on
average reasoning time, it is thus not unreasonable to hypothesise
that our meta-reasoners would outperform Meta-RakSOR, as our
meta-reasoners outperform Konclude.

In our evaluation we retain timeout ontologies to realistically
assess performance of all reasoners. We assess the impact of
those ontologies that result in a runtime error in two differ-
ent experiments. In the first experiment (hereinafter referred
as ErrorsRemoved), the error ontologies for each reasoner are
removed. In the second experiment (hereinafter referred as Er-
rorsReplaced), the error ontologies for each reasoner are treated
as they timeout. Note that in ErrorsRemoved, it may be the
case that a reasoner that strictly conforms to OWL semantics
may throw many runtime errors on a corpus of ontologies as it
may reject non-conformant constructs (e.g. imaginary numbers).
As such, such a reasoner may turn out to be efficient in the
experiment ErrorsRemoved than in ErrorsReplaced.

8 https://github.com/Alaya2016/Multi-RakSORDemo.

https://github.com/andreas-steigmiller/ore-competition-framework
http://owl.cs.manchester.ac.uk/publications/supporting-material/ore-2015-report/
http://owl.cs.manchester.ac.uk/publications/supporting-material/ore-2015-report/
https://github.com/Alaya2016/Multi-RakSORDemo
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In each experiment, standard 10-fold cross validation is per-
formed to adequately assess the performance of the meta-
reasoners. That is, we take the following steps: (1) shuffle the
ontologies O randomly; (2) split O into 10 subsets; (3) for each
subset, take the subset (i.e 10%) as test set (Ote), and take the
remaining subsets (i.e. 90%) as a training set (i.e. Otr ); (4) fit a
model on the training set and evaluate it on the test set; and (5)
average the evaluation scores of the model across 10-times.

As evaluation metrics, average runtime (i.e. reasoning time)
is used as the main evaluation metric for the meta-reasoner. To
evaluate our runtime prediction (regression) models, we used
the standard ‘coefficient of determination’ (R2) as used in [26].
R2 denotes the proportion of the variation in the target variable
(i.e. reasoning time) that can be explained by each prediction
model r̂ ∈ R̂. The higher the R2 value is, the more accurate
the model is. Moreover, we evaluate our meta-reasoners using
the standard metric precision at 1 (P@1), as the meta-reasoners
require the predicted best reasoner. The performance number
reported in the rest of the section is the average on the test set
over the 10 folds for each experiment.

In the experiment ErrorsReplaced, in each fold of the cross-
validation, 90% of 1760 ontologies (≈ 1584) are used for training,
and the rest 10% (≈ 176) are used for testing. In the experiment
ErrorsRemoved, the 1389 ontologies are randomly divided into
the training set (≈ 1250) and the test set (≈ 139) in each fold.

7. Evaluation results and analysis

In this section we present the evaluation results and their
detailed analysis. The evaluation is conducted in two parts. In Sec-
tion 7.1, we present the performance evaluation of the prediction
models used in R2O2* on the training set Otr . In Section 7.2, we
present the overall evaluation results, obtained on the test set Ote,
comparing R2O2* with component reasoners and AutoFolio.

7.1. Performance evaluation of the key learning components in
R2O2*

Here, we present the performance evaluation of the predic-
tion models (regression models, classifiers and rankers) used in
our meta-reasoning framework R2O2*, obtained through 10-fold
cross-validation on the training set Otr .

7.1.1. Performance of regression models in R2O2*(pt)
Here, our goal is to assess the generalisability of the prediction

models r̂i of reasoner ri ∈ R. As described in Section 5.2.1,
these prediction models are central to R2O2*(pt). Performance
(i.e. generalisability) was measured in terms of the coefficient of
determination (R2), as introduced in Section 6.

As presented in Section 5.2.1, we use a stacking approach to
build a prediction model with two base regression models (level-
0 models): random forest regression algorithm and XGBoost [28].
As a meta-regression model (level-1 model), we also used these
two algorithms.

We employed the widely-used Weka framework.9 as our
evaluation environment. For ease of experimentation we chose
Weka’s version of the random forest algorithm. For XGboost, we
used Weka-XGBoost.10 that can easily interface with Weka.

For the random forest algorithm, we use the default config-
uration in Weka. For XGBoost, we set the following parameters
keeping all the others fixed as default throughout this paper:
num_round = 50 (the number of rounds for boosting), eta = 0.1

9 https://www.cs.waikato.ac.nz/ml/weka/.
10 https://github.com/SigDelta/weka-xgboost.

Table 2
A summary of prediction model performance as measured by R2 on the dataset
ErrorsRemoved.
Model RF XGBoost meta-RF meta-XGBoost

r̂FaCT++ 0.852 0.852 0.852 0.853
r̂HermiT 0.825 0.824 0.831 0.833
r̂JFact 0.904 0.903 0.906 0.907
r̂Konclude 0.910 0.905 0.909 0.909
r̂MORe 0.723 0.705 0.707 0.708
r̂Pellet 0.770 0.763 0.765 0.766
r̂Elk 0.948 0.947 0.949 0.950

Mean 0.847 0.843 0.846 0.847

Table 3
A summary of prediction model performance as measured by R2 on the dataset
ErrorsReplaced.
Model RF XGBoost meta-RF meta-XGBoost

r̂FaCT++ 0.835 0.832 0.834 0.835
r̂HermiT 0.807 0.807 0.812 0.814
r̂JFact 0.843 0.833 0.839 0.840
r̂Konclude 0.909 0.909 0.912 0.913
r̂MORe 0.757 0.744 0.750 0.756
r̂Pellet 0.727 0.724 0.719 0.723
r̂Elk 0.939 0.936 0.939 0.940

Mean 0.831 0.826 0.829 0.832

(learning (or shrinkage) parameter that controls how much infor-
mation from a new tree will be used in the Boosting), max_depth
= 10 (controls the maximum depth of the trees: deeper trees
have more terminal nodes and fit more data), sub_sample =

0.5 (determines if we are estimating a Boosting or a Stochastic
Boosting. A value 1 represents the regular boosting, and a value
between 0 and 1 is for the stochastic case. The stochastic Boosting
uses only a fraction of the data to grow each tree. For example, if
we use 0.5 each tree will sample 50% of the data to grow). Note
that these parameter values were chosen empirically. XGBoost
uses multiple parameters and determining optimal parameter
values is beyond the scope of this paper.

Tables 2 and 3 show the R2 values of the 7 prediction mod-
els obtained from cross-validation on the training data Otr in
the two experiments: ErrorsRemoved and ErrorsReplaced. Note
that we have compared the prediction performance of 4 re-
gression models as candidates as a prediction model for each
reasoner: (1) random forest regression algorithm (denoted by
RF), (2) XGBoost, (3) a stacking meta-regression model using
random forest regression algorithm (denoted by meta-RF), and
(4) a stacking meta-regression model using XGBoost (denoted
by meta-XGBoost). R2 denotes the proportion of the variation in
the target variable (i.e. reasoning time) that can be explained by
the model. For example, 0.853 in the model r̂FaCT++, implemented
by meta-XGBoost, indicates that 85.3% of the variation in the
reasoning time can be accounted for by meta-XGBoost. In Table 2,
both RF and meta-XGBoost show the best prediction performance
whereas in Table 3, meta-XGBoost has the highest R2 value.
Thus, we choose meta-XGBoost to implement the meta-reasoner
R2O2*(pt).

The above observations provide insight into how well the 7
prediction models can fit the given data. The similar values of R2

with the ones in [26] (i.e. averaged R2
= 0.869) suggest a good

generalisability of the models.

7.1.2. Performance of rankers in R2O2*(rk)
As explained in Section 5.2.2, our meta-reasoner, R2O2*(rk),

incorporates a single ranker which differs from our previous ap-
proach in R2O2 [27] that uses an aggregation of multiple rankers.

https://www.cs.waikato.ac.nz/ml/weka/
https://github.com/SigDelta/weka-xgboost
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Table 4
A summary of performance assessment of the 5 rankers in terms of P@1.
Ranker ErrorsRemoved ErrorsReplaced
KNNRanker 0.973 0.952
PCTRanker 0.974 0.944
RPCRanker 0.970 0.947
RegRanker 0.967 0.947
ARFRanker 0.978 0.955

Table 5
A summary of performance of the two prediction models for meta-reasoner
R2O2*(mc) in terms of accuracy.

Model ErrorsRemoved ErrorsReplaced
RF 0.984 0.944
XGBoost 0.984 0.945

To implement R2O2*(rk), we initially considered the 5 rankers11

that are used in R2O2 [27] on the ranking matrix Mr: (1) KN-
NRanker that aggregates rankings using the nearest neighbours,
(2) PCTRanker that is based on predictive clustering tree for
ranking, (3) RPCRanker that is based on a multiple binary pairwise
classifier to construct a ranking model, (4) RegRanker where the
ranking problem is cast to a multi-target regression problem,
where the rank position values of each reasoner are the targets
in the multi-target regression setting, and (5) ARFRanker that is
based on using random forests for ensembling multiple binary
approximated ranking trees. Then, we choose the one showing
the best performance in 10-fold cross-validation on the training
data Otr . For each ranker, its performance was measured by
precision at 1 (denoted by P@1) that measures the proportion of
the reasoners that are correctly recommended by the ranker as
most efficient reasoner.

Table 4 shows the performance of the 5 rankers in terms of
P@1 on both datasets, ErrorsRemoved and ErrorsReplaced. For
each ranker, P@1 was measured using 10-fold cross-validation
from the ranking matrix generated from the training data Otr .
The ranking matrix formation was presented in Eq. (7) in Sec-
tion 5.2.2. As seen in the table, all 5 rankers showed high perfor-
mance, achieving more than 90% of the P@1 values. ARFRanker
shows the best performance (denoted in bold): 0.978 and 0.955
on ErrorsRemoved and ErrorsReplaced, respectively.
Consequently, to implement our meta-reasoner R2O2*(rk), we use
ARFRanker.

7.1.3. Performance of the classifiers in R2O2*(mc)
As presented in Section 5.2.3, the meta-reasoner: R2O2*(mc)

learns the most efficient reasoner on the training data, and pre-
dicts the most likely efficient reasoner for an unknown ontol-
ogy. Using the ontology representation scheme in Eq. (5), we
considered two classifiers: random forest algorithm and XGBoost.

Table 5 shows the prediction performance in terms of classifi-
cation accuracy on both datasets, ErrorsRemoved and ErrorsRe-
placed. As can be seen, the prediction performance is very similar
between RF and XGBoost where the best one on each dataset is
denoted in bold. In our evaluation, we use XGBoost as it shows
the better performance than RF overall.

In the following subsection, we present and analyse the eval-
uation results of our proposed four meta-reasoners on the testing
data Ote.

11 These rankers are available in http://www.quansun.com, Readers interested
in the details of the rankers are referred to [60].

7.2. Performance evaluation of R2O2* on reasoning efficiency

In this subsection we discuss the evaluation results com-
paring our meta-reasoners with the various component reason-
ers as well as AutoFolio [31], a state-of-the-art algorithm selec-
tion framework as a strong and robust baseline, following the
evaluation framework presented in Section 6.

To summarise the performance characteristics of the various
component and meta-reasoners, Fig. 1 shows a violin plot of the
reasoning time of the reasoners on log scale, for the experiment
ErrorsReplaced. A violin plot is a combination of a boxplot and
a mirrored kernel density plot. As a result, a violin plot visualises
the underlying distribution that boxplot does not show. Each
shape in Fig. 1 contains the following components.

• The (mirrored) violin itself shows the distribution of reason-
ing time.

• The cross (×) in the middle shows the mean reasoning time
of the reasoner.

• The plus symbol (+) in the middle shows the median rea-
soning time of the reasoner.

• The three horizontal lines within each shape shows the 25%,
50%, and 75% of data, respectively.

• The grey dots represent the actual reasoning time of all
ontologies.

As can be seen from the figure, the dominance of Konclude
over the other five component reasoners is evident. R2O2*(all)
shares similar performance characteristics with AutoFolio and
VBR, but with a lower mean reasoning time than AutoFolio. The
term VBR stands for the virtual best reasoner, which exhibits the
optimal efficiency. Even VBR times out on a number of ontologies
(grey dots on 1800.0 at the top of the plot), showing the challeng-
ing nature of ontology reasoning. The remainder of the section
will present more details and discussions on these performance
comparisons.

7.2.1. Meta-reasoner time overhead
The four different variants of R2O2* all require some addi-

tional tasks at both training time and test time. At training time,
overall across the 10-fold cross validation, R2O2*(pt) needs to
learn regression models (Section 5.2.1); R2O2*(rk) needs to learn
rankers (Section 5.2.2), R2O2*(mc) needs to learn a multi-class
classifier (Section 5.2.3); and R2O2*(all) ensembles all the above
(Section 5.2.4), hence needing to learn all those models. At testing
time, each of the meta-reasoners will need to apply these models.

We have calculated the time overhead of learning and apply-
ing these models. At training time, building a regression model
for a reasoner takes 1–2.5 s (stacking model that combines RF
and XGBoost), building a ranker takes 0.3–0.6 s, building a multi-
class classifier takes 0.3–0.5 s, and building a final stacking model
(R2O2*(all)) takes an additional 0.1 s At testing time, making pre-
diction for a given ontology by R2O2*(all) takes a negligible < 0.5
ms.

We note that the time overhead at training time does not
affect R2O2*’s performance as an OWL reasoner. It is only the
overhead at testing time that does, as for a new ontology, pre-
dictions need to be made for the various models. In all the
experiments below in the rest of this section, R2O2*’s reported
reasoning time already includes the testing-time time overhead.

7.2.2. Comparison with our meta-reasoners and component reason-
ers

We now evaluate our meta-reasoners against the six com-
ponent reasoners, Autofolio and VBR in detail. The evaluation
is conducted for the two experiments described in the previous
section, ErrorsRemoved, in which error ontologies are removed,

http://www.quansun.com
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Fig. 1. A summary of reasoning time characteristics, in seconds and log-scale, of various reasoners in violin plots.

and ErrorsReplaced, in which error ontologies are treated as they
time out. Furthermore, for each experiment, we experiment with
the inclusion/exclusion of ELK in our meta-reasoners, as described
in Section 5. By incorporating ELK, our meta-reasoners can handle
the simpler OWL 2 EL ontologies more efficiently, which will
improve the overall performance.

The reasoners are evaluated on two metrics: (1) average preci-
sion at 1 (P@1), which measures whether a reasoner is the most
efficient on a given test collection Ote across 10-fold cross vali-
dation, and (2) average runtime (Avg. runtime), which measures
the mean reasoning time on a given test collection Otr in seconds
across 10-fold cross-validation. The results presented in the rest
of this subsection are the average of those obtained on the test set
in each of the 10 folds. Note that in each fold, the test collection
Ote is differently chosen from the total ontology collection O.
A more detailed description about our evaluation framework is
found in Section 6.

Tables 6 and 7 show evaluation results for the two exper-
iments, ErrorsRemoved and ErrorsReplaced, respectively. We
note that in the case where ELK is included in our meta-reasoners,
the P@1 and Avg. runtime values for ELK are not recorded over
the entire test set, but only the subset of OWL 2 EL ontologies.
Hence a comparison between ELK and the other reasoners is not
meaningful. Note that as we discussed in Section 5.2, R2O2*(pt)
follows a similar spirit of the non-ranking portfolio reasoner
PR [27], and R2O2*(rk) follows a similar spirit of R2O2 [27]. A
number of important observations can be made from these tables.

• In the experiment ErrorsRemoved, in all but one case, the
best variant of our meta-reasoners outperforms all compo-
nent reasoners in terms of P@1. Konclude has the same per-
formance (98.78%) as our meta-reasoners (R2O2*(rk),
R2O2*(mc), and R2O2*(all)) when ELK is not considered.

• In both experiments ErrorsRemoved and ErrorsReplaced,
in all cases, the best variant of our meta-reasoners outper-
forms all component reasoners in terms of average run-
time, including the highly efficient, parallelising reasoner
Konclude.

• Out of all the variants of our meta-reasoners, R2O2*(all) ex-
hibits overall best efficiency. Of all the four experimental
setups, R2O2*(all) exhibits the best performance of three, and
second best in the other one. R2O2*(all) achieves a speedup
of at least 1.10x (over Konclude in experiment ErrorsRe-
placed) and at most 41.69x (over JFact in experiment Er-
rorsRemoved). Its best efficiency is the result of the stacking
technique employed in R2O2*(all).

Table 6
Performance evaluation in the experiment ErrorsRemoved, in which error
ontologies are removed. Our meta-reasoners are compared with component
reasoners and the virtual best reasoner (VBR). In each column, the best results
are bolded and the second best results are underlined.
Reasoner Without ELK With ELK

P@1 Avg. runtime P@1 Avg. runtime

FaCT++ 0.36% 201.62 0.36% 201.62
Hermit 0.14% 54.17 0.14% 54.17
JFact 0.07% 308.47 0.07% 308.47
Konclude 98.78% 8.58 97.26% 8.58
MORe 0.79% 89.93 0.58% 89.93
Pellet 0.22% 164.30 0.22% 164.30
ELK – – 1.73% 0.69

R2O2*(pt) 98.56% 8.60 98.20% 8.53
R2O2*(rk) 98.78% 8.58 98.42% 8.51
R2O2*(mc) 98.78% 7.48 98.49% 7.40
R2O2*(all) 98.78% 7.48 98.49% 7.40
VBR 100% 4.50 100% 4.43

Table 7
Performance evaluation of the experiment ErrorsReplaced, in which error
ontologies are replaced by timeouts (30 min). Our meta-reasoners is compared
with component reasoners and the virtual best reasoner (VBR). In each column,
the best results are bolded and the second best results are underlined.
Reasoner Without ELK With ELK

P@1 Avg. runtime P@1 Avg. runtime

FaCT++ 1.31% 365.92 1.25% 365.92
Hermit 0.68% 138.06 0.68% 138.06
JFact 0.57% 532.11 0.57% 532.11
Konclude 97.22% 27.15 94.55% 27.15
MORe 2.16% 139.68 1.48% 139.68
Pellet 0.91% 322.59 0.85% 322.58
ELK – – 3.47% 0.97

R2O2*(pt) 97.10% 24.50 96.82% 23.89
R2O2*(rk) 97.73% 25.72 97.05% 24.45
R2O2*(mc) 97.39% 26.93 96.82% 25.66
R2O2*(all) 97.56% 24.67 97.16% 23.39
VBR 100% 16.65 100% 16.22

• The inclusion of ELK in our meta-reasoners indeed improves
reasoning efficiency. Even though ELK is only able to handle
the less expressive OWL 2 EL profile, our meta-reasoners
are able to take advantage of its efficiency in handling such
ontologies.
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Table 8
Comparison of percentage of each component reasoner being the most efficient
in each bin and overall in experiment ErrorsRemoved (Rea: Reasoner, E: ELK,
F: FaCT++, H: HermiT, J: JFact, K: Konclude, M: MORe, P: Pellet).
Rank Overall A B C D

% Rea % Rea % Rea % Rea % Rea

1 96.92 K 100 K 88.62 K 80.56 K 27.27 F,K
2 1.72 E 0 E,F,H,J,M,P 8.94 E 11.11 M 18.18 M
3 0.57 M – – 0.81 M,P 5.56 E 9.09 H,J,P
4 0.36 F – – 0.41 F,H 2.78 F 0 E
5 0.22 P – – 0 J 0 H,J,P – –
6 0.14 H – – – – – – –
7 0.07 J – – – – – –

Table 9
Comparison of percentage of each component reasoner being the most efficient
in each bin and overall in experiment ErrorsReplaced (Rea: Reasoner, E: ELK,
F: FaCT++, H: HermiT, J: JFact, K: Konclude, M: MORe, P: Pellet).
Rank Overall A B C D

% Rea % Rea % Rea % Rea % Rea

1 91.93 K 100 K 84.41 K 67.31 K 20.83 M
2 3.37 E 0 E,F,H,J,M,P 11.18 E 22.12 E 18.06 F,K
3 1.44 M – – 2.35 F 7.69 M 15.28 H
4 1.22 F – – 0.88 M,P 1.92 P 13.89 J,P
5 0.83 P – – 0.29 H 0.96 F 0 E
6 0.66 H – – 0 J 0 H,J – –
7 0.55 J – – – – – –

Table 1 in Section 7 shows the vast efficiency dominance of
Konclude over the other component reasoners. To better under-
stand the reasoners’ performance, we divide the ORE 2015 dataset
into four bins of discretised reasoning time. The discretisation is
performed on the best reasoning time (in seconds) of the virtual
best reasoner (VBR), into four bins: ‘A’ (0, 1), ‘B’ [1, 10), ‘C’
[10, 100), and ‘D’ [100, 1800], which represent ontologies with
increasing difficulty.

Tables 8 and 9 summarise, in each bin and the entire ontology
collection O, the percentage of each component reasoner being
the most efficient. The component reasoners are ordered by their
percentages of being the most efficient, from highest to lowest.
Note ELK only performs reasoning on the subset of OWL 2 EL
ontologies. Note that the % values in the tables are averaged
from the test sets of 10-fold cross validation in the above two
experimental setups. Also note that the % values in Tables 8 and
9 are different from the P@1 values in Tables 6 and 7. The %
values show the percentage being the most efficient across all the
component reasoners. Thus, the sum of the % values in each of the
columns - ‘Overall’, ‘A’, ‘B’, ‘C’ and ‘D’ is 1. From these tables, we
note a number of interesting observations:

• Konclude’s dominance is again evident, as it is the most ef-
ficient reasoner for all bins except only in bin D, experiment
ErrorsReplaced, where MORe is the most efficient.

• Despite its dominance, Konclude does not dominate the
most challenging category, bin D. In experiment ErrorsRe-
moved both FaCT++ and Konclude are the most efficient, and
in experiment ErrorsReplaced MORe is the most efficient.

• For the most difficult category, bin D, many component rea-
soners are the most efficient for a considerable percentage.
In other words, the dominance of any component reasoner
is much less pronounced. This shows the challenging nature
of algorithm selection in the ontology reasoning context,
where for the most challenging instances, a large num-
ber of choices are possible. This observation also indicates
considerable room for further investigation.

Table 10
Summary of mean reasoning performance (in seconds) comparison between
AutoFolio and R2O2*(all) (R2O2*(all) , both with and without ELK). In each row, best
performance in the test set is highlighted in bold, and second best performance
in the test set is underlined.
Experiment AutoFolio R2O2*(all)

(without ELK)
R2O2*(all)
(with ELK)

ErrorsRemoved 8.58 7.48 7.40
ErrorsReplaced 27.15 24.67 23.39

7.2.3. Comparison with AutoFolio
In this section, we evaluate R2O2*(all) against AutoFolio for

the ontology classification problem.12 We have chosen R2O2*(all)
for comparison with AutoFolio as it shows the best performance
overall in our evaluation as discussed in the previous section.
AutoFolio and R2O2*(all) use the same set of metrics, and are
trained and tested on the same data splits and the same set of
six reasoners. Hence, the comparison is fair. Note that AutoFolio
makes use of functionally equivalent components hence it cannot
take advantage of ELK. As described in Section 6, 10-fold cross
validation is carried out for both experiments. In each fold, an
AutoFolio model is trained on the training set, and then evaluated
on the test set.

Table 10 summarises the mean reasoning time for the two
experiments. As can be observed in the table, R2O2*(all) outper-
forms AutoFolio in both experiments. The best performance is
achieved when ELK is incorporated in R2O2*(all), where R2O2*(all)
outperforms AutoFolio by 15.95% and 16.08% respectively. How-
ever, even without ELK, R2O2*(all) also outperforms AutoFolio, by
14.71% and 10.05% respectively. These results demonstrate the
effectiveness of R2O2*(all) as AutoFolio represents the state-of-the-
art method in automated algorithm selection.

We further analysed the component reasoners selected by
AutoFolio and R2O2*(all) in both experiments. In ErrorsRemoved,
AutoFolio exclusively selects Konclude for all 1389 instances. In
ErrorsReplaced, AutoFolio selects MORe in 11 (0.625%) of the
1760 instances, and Konclude 1749 (99.375%) instances.

On the other hand, R2O2*(all) is able to select a more diverse
set of efficient reasoners. Table 11 shows, with ELK included,
the number and percentage of times each component reasoner is
selected by R2O2*(all) for each bin as well as the entire dataset.
These results provide additional evidence that always select-
ing the most-efficient-on-average reasoner(s) is not the most
optimal approach. For example, Table 1 shows that the mean
reasoning time of MORe is more than 20x slower than Konclude.
However, in experiments ErrorsReplaced, MORe is selected al-
most 30% among the most difficult ontologies (bin D). Thus, this
analysis further validates the effectiveness of the sophisticated
meta-reasoning framework R2O2*(all).

7.3. Key metrics identification

Lastly, we investigate the identification of each of the 29
metrics’ influence on the performance of our meta-reasoners. This
will provide insight into the contribution of individual metrics we
have chosen (i.e. 29 metrics) on their performance. We measure
the relative metric importance by using the feature importance
values provided by the XGBoost classifier used in R2O2*(mc). Fig. 2
shows the most important metrics for the prediction task of
R2O2*(mc), which is to predict the most efficient reasoner, in both
experiments. The weights are estimated by calculating the aver-
age of importance of the metrics through 10-fold cross validation
and normalised into [0, 1]. The weight of each metric is measured

12 AutoFolio is available at https://github.com/mlindauer/AutoFolio.

https://github.com/mlindauer/AutoFolio
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Fig. 2. Importance of ontology metrics for R2O2*(mc) in both experiments. For each experiment the metrics are ordered in descending order by their importance
values.

Table 11
The number and percentage of each component reasoner being selected by
R2O2*(all) in both experiments, with ELK included. Percentages are calculated
column-wise.

Overall (%) A (%) B (%) C (%) D (%)

ErrorsRemoved
Konclude 1354 (97.48) 1101 (100) 219 (88.66) 28 (82.35) 6 (85.71)
MORe 1 (0.07) 0 0 0 1 (14.29)
ELK 34 (2.45) 0 28 (11.34) 6 (17.65) 0

ErrorsReplaced
FaCT++ 6 (0.34) 0 6 (1.80) 0 0
Konclude 1682 (95.57) 1294 (100) 291 (87.12) 79 (75.24) 18 (66.67)
MORe 13 (0.74) 0 0 5 (4.76) 8 (29.63)
Pellet 2 (0.11) 0 0 1 (0.95) 1 (3.70)
ELK 57 (3.24) 0 37 (11.08) 20 (19.05) 0

based on the number of times it is used to split the data across
all trees in XGBoost.

As can be seen from the figure, different metrics are important
for each experiment. However, there are some common impor-
tant metrics. Two metrics, SOV and mCID, are common to both
experiments’ top 5 metrics. Six metrics, IND, SOV, mCID, aCID,
RHLC, and EOG, are common to both experiments’ top 10 metrics.
For both experiments, OBP% is the least important among the
29 metrics. Curiously, DTP% is the most important for experi-
ment ErrorsRemoved, while it is the second least important for
ErrorsReplaced.

8. Conclusion

Reasoning support for OWL ontologies is essential for ensuring
the correctness of ontologies, and for inferring implicit knowl-
edge from them. For an expressive ontology language such as
SHOIN (D) and SROIQ(D), worst-case complexity is very high.
Moreover, ample empirical evaluation has also confirmed the
hardness of actual, real-world ontologies, even on state-of-the-art
ontology reasoners such as Konclude and HermiT.

This paper presented R2O2*, a novel, robust meta-reasoning
framework that automatically ranks component reasoners by ef-
ficiency and selects the one that is most likely the most efficient
for any given ontology. The R2O2* framework comprises a num-
ber of novel contributions: (1) we learn regression models that

accurately predict reasoning time for a number of state-of-the-art
ontology reasoners; and (2) we propose a learning- and ranking-
based meta-reasoner that ensembles base prediction models and
thus combines component reasoners based on their predicted
reasoning efficiency, and (3) we formally define a large suite of
syntactic and structural metrics that describe ontologies.

We performed a comprehensive evaluation on six state-of-
the-art OWL 2 DL reasoners and a large corpus of carefully cu-
rated ontologies. Our evaluation shows that R2O2* significantly
outperforms all six component reasoners as well as AutoFolio, a
strong, general-purpose, and state-of-the-art algorithm selection
system. Compared to component reasoners, R2O2* achieves a
speedup of at least 1.10x (over Konclude) and up to 41.69x (over
JFact).

Extending our R2O2* meta-reasoning framework to a multi-
criteria setting as done in Multi-RakSOR [49,50] is a natural
next step. We plan to extend our methodology to support ABox
reasoning, and investigate support of other non-standard rea-
soning problems. Continuing on our work on ABox-intensive EL
ontologies [38] and reasoning on the Android platform [39], we
will further investigate sources of ABox reasoning hardness by
studying structural and syntactic properties of ABoxes. Perfor-
mance prediction and optimisation utilising machine learning
techniques is particularly interesting and relevant in the context
of ontology-based data access (OBDA) [5], where a large database
is enhanced by an ontology, and (conjunctive) query answer-
ing on the database requires ontology reasoning [61]. We will
also investigate the generation of synthetic, yet realistic bench-
mark ontologies (TBoxes) and instances (ABoxes) to assist in the
evaluation and optimisation of reasoners. Finally, investigating
the correlation of efficiency between different reasoning tasks
by a same reasoner is also an interesting problem worthy of
investigation.
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Table A.12
Definitions of the 24 ontology-level (ONT) metrics. Note that ‘‘ ’’ represents
‘‘don’t cares’’.
Metric Definition

SOV No. of named entities (classes, properties & individuals)
ENR Ratio between number of (named and anonymous) entities

and number of edges
TIP Difference between number of subclass axioms and number

of (named or anonymous) classes
EOG The entropy of the ontology graph, measuring the diversity

of the edge distribution
CYC The cyclomatic complexity of the ontology, measuring the

number of linearly independent paths
RCH The ratio of (possibly nested) anonymous class expressions

and all (named or anonymous) class expressions

IND No. of (named or anonymous) individuals
GCI No. of GCI axioms
HGCI No. of hidden GCI axioms
ESUB% Ratio of subclass axioms that contain (nested) existential

restrictions (∃R. )
DSUB% Ratio of subclass axioms that contain (nested) class unions

( ⊔ )
CSUB% Ratio of subclass axioms that contain (nested) class

intersections ( ⊓ ) and the subclass is anonymous
ELCLS% Ratio of (nested) class expressions that are in OWL 2 EL

profile
ELAX% Ratio of subclass or equivalent class axioms that only

contain expressions in the OWL 2 EL profile
HLC Count hard language constructs containing in superclass

expressions
HLC% Ratio of HLC and subclass axioms

SUBCECHN No. of top-level subclass expressions that contain chained
existential restrictions

SUPCECHN No. of top-level superclass expressions that contain chained
existential restrictions

DSUBCECHN Max depth of chained existential restrictions in a subclass
expression

DSUPCECHN Max depth of chained existential restrictions in a superclass
expression

SUBCCHN No. of top-level subclass expressions that contain chains of
conjunctions

SUPCCHN No. of top-level superclass expressions that contain chains of
conjunctions

DSUBCCHN Max depth of nested conjunctions in a subclass expression
DSUPCCHN Max depth of nested conjunctions in a superclass expression

Table A.13
Definitions of the 15 class-level (CLS) metrics. Note that C represents a (named
or possibly nested) class expression in an ontology, and NC denotes the total
number of (named or possibly nested) class expressions in a given ontology.
Metric Definition

tNOC
∑
C

NOC(C)

aNOC tNOC
NC

mNOC maxCNOC(C)

tNOP
∑
C

NOP(C)

aNOP tNOP
NC

mNOP maxCNOP(C)

tCID/tCOD
∑
C

incoming/outgoing edges of C

aCID/aCOD aCID =
tCID
NC

, aCOD =
tCOD
NC

mCID/mCOD mCID = maxCCID(C), mCOD = maxCCOD(C)

tDIT
∑
C

distance of C from owl:Thing in a depth-first manner

aDIT
tDIT
NC

mDIT maxCDIT (C)

Table A.14
Definition of the 22 (possibly nested) anonymous class expression (ACE) metrics.
Note that each row represents a count metric and a ratio metric (represented
by [%]) for the same type of class expressions.
Metric Definition

ENUM[%] For enumerations/nominals ({a, b, c}, where a, b, c are
individuals)

NEG[%] For class negations (¬C)
CONJ[%] For class intersections (conjunctions, C1 ⊓ C2)
DISJ[%] For class unions (disjunctions, C1 ⊔ C2)
UF[%] For universal restrictions (∀R.C)
EF[%] For existential restrictions (∃R.C)
VALUE[%] For value restrictions (∃R.{a}), where a is an individual
SELF[%] For self references
MNCAR[%] For min cardinality restrictions (≥ n R.C)
MXCAR[%] For max cardinality restrictions (≤ n R.C)
CAR[%] For (exact) cardinality restrictions (= n R.C)

Table A.15
Definitions of the 30 property-level (PRO) metrics.
Metric Definition

OBP[%] Count and ratio of object-properties
DTP[%] Count and ratio of datatype-properties
FUN[%] Count and ratio of functional properties
SYM[%] Count and ratio of symmetric properties
TRN[%] Count and ratio of transitive properties
IFUN[%] Count and ratio of inverse functional properties
ASYM[%] Count and ratio of asymmetric properties
REFLE[%] Count and ratio of reflexive properties
IRREF[%] Count and ratio of irreflexive properties
CHN[%] Count and ratio of property chain axioms

SUBP Count of subproperty axioms
EQVP Count of equivalent property axioms
DISP Count of disjoint property axioms
INV Count of inverse property axioms
DOMN Count of domain axioms
RANG Count of range axioms

ELPROP% Ratio of property axioms that are in the OWL 2 EL profile
IHR Count of class axioms that involve property hierarchies
IIR Count of class axioms that involve inverse properties
ITR Count of class axioms that involve transitive properties

Appendix. Metric definitions

See Tables A.12–A.15.
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