
Information Systems 104 (2022) 101914

n
a
t
c
c
r
M
e
f
d

e
(
(

E

h
0

Contents lists available at ScienceDirect

Information Systems

journal homepage: www.elsevier.com/locate/is

Keyword aware influential community search in large attributed
graphs
Md. Saiful Islam a,b,1, Mohammed Eunus Ali a,∗, Yong-Bin Kang c, Timos Sellis c,d,
Farhana M. Choudhury e, Shamik Roy f

a Bangladesh University of Engineering and Technology, Bangladesh
b University of Rochester, United States
c Swinburne University of Technology, Australia
d Facebook, United States
e University of Melbourne, Australia
f Purdue University, United States

a r t i c l e i n f o

Article history:
Received 24 November 2020
Received in revised form 12 August 2021
Accepted 6 October 2021
Available online 16 October 2021
Recommended by Heiko Paulheim

Keywords:
Influential community search
Semantic keyword
Community search in attributed graph
Social network
Community search

a b s t r a c t

Influential community search (ICS) on a graph finds a closely connected group of vertices having a
dominance over other groups of vertices. The ICS has many applications in recommendations, event
organization, and so on. In this paper, we introduce a new variant of ICS, namely keyword-aware
influential community query (KICQ), that finds the communities with the highest influential scores
and whose keywords match with the query terms (a set of keywords) and predicates (AND or OR).
It is challenging to find such communities from a large network as the traditional pre-computation
approach is not applicable with the change of query terms at every instance of the search. To solve
this problem, we design two efficient algorithms: (i) a branch-and-bound approach that exploits the
bounds computed from already explored communities to prune the search space, and (ii) a novel index
based approach that hierarchically organizes sub-communities and keywords with associated bounds
to quickly identify the desired communities. We propose a new influence measure for a community
that considers both the cohesiveness and influence of the community and eliminates the need for
specifying values of internal parameters of a network. We present detailed experiments and a case
study to demonstrate the effectiveness and efficiency of the proposed approaches.

© 2021 Published by Elsevier Ltd.
o
t
t
a
A
t
c
c
t

1. Introduction

Finding communities from large networks has received sig-
ificant attention in recent years due to its diverse practical
pplications including event organization [1], e-commerce adver-
isement [2], and friend recommendation [3]. In usual practice,
ommunity search (CS) on a large network involves finding a
ommunity around a given query vertex that satisfies query pa-
ameters like connectivity and cohesiveness constraints [1,4–6].
ore recent research works [7,8] have focused on finding influ-
ntial communities from a network where the common goal is to
ind a closely connected group of users (vertices) who have some
ominance over other users in the network. We suggest that the

∗ Corresponding author.
E-mail addresses: mislam6@ur.rochester.edu (M.S. Islam),

unus@cse.buet.ac.bd (M.E. Ali), ykang@swin.edu.au (Y.-B. Kang), tsellis@fb.com
T. Sellis), fchoudhury@unimelb.edu.au (F.M. Choudhury), roy98@purdue.edu
S. Roy).
1 Work done while the author was a student of Bangladesh University of
ngineering and Technology.
 s

ttps://doi.org/10.1016/j.is.2021.101914
306-4379/© 2021 Published by Elsevier Ltd.
influence measure of a community is subjective, and depends on
the interests of the query issuer. For example, a popular football
community has little or no influence over a user not interested
in sports. Thus, it is important to incorporate the user’s interests
while searching for influential communities, which is ignored in
the current literature.

Though a large body of research have already addressed vari-
ous aspects of CS, in this paper, we address the following gaps in
the existing works:

First, traditional CS works on an attributed graph find a group
f neighboring vertices whose keywords have high similarity with
he given query vertex keywords and satisfy the required struc-
ural constraints [4,6] (e.g., C1 in Fig. 1 with n3 as the query vertex,
nd parameter k = 4 where k-truss is the structural constraint).
major limitation of such CS techniques is that the user needs

o define the query vertex and the structural properties of the
ommunity explicitly, which might not be suitable in many appli-
ation domains. A couple of recent studies [9,10] tried to address
hese limitations by finding cohesive (i.e., k-core or triangle den-

ity) communities having close similarity with query keywords.

https://doi.org/10.1016/j.is.2021.101914
http://www.elsevier.com/locate/is
http://www.elsevier.com/locate/is
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2021.101914&domain=pdf
mailto:mislam6@ur.rochester.edu
mailto:eunus@cse.buet.ac.bd
mailto:ykang@swin.edu.au
mailto:tsellis@fb.com
mailto:fchoudhury@unimelb.edu.au
mailto:roy98@purdue.edu
https://doi.org/10.1016/j.is.2021.101914

M.S. Islam, M.E. Ali, Y.-B. Kang et al. Information Systems 104 (2022) 101914

a
c

Fig. 1. An attributed author–author graph, where each vertex has an associated list of attributes (keywords) and influences denoting her expertise. Different types
of CS communities are marked as C1–C4 .
r
t
t
‘
m
a
w
t
c
e
(
i
e

t
m
p
p
b
n
(

c
b
f
m
b

However, they do not consider the influence of individuals in
different keywords (e.g., C1 in Fig. 1 is highly cohesive in terms
of structure and keyword, but two highly influential vertices n1,
n2 are ignored in this case) and also do not support flexible
conjoining (e.g., AND or OR predicates) of query keywords.

Second, existing works on influential community search only
work on non-attributed graphs and also require specific values of
structural parameters. For example, [7] requires users to men-
tion the value of k while finding k-core based communities;
similarly, [8] requires the values of the minimum number of
vertices m in a community and the maximum distance p between
any two vertices while finding an mp-clique based community.
Although such parameters allow high customization in search,
we argue that the choice of these parameters highly depends
on the internal structure of the graph in practice. For example,
if k is set to a high value (e.g., 4) in a small graph (Fig. 1),
no community is returned by [7] because there is no 4-core in
this graph; and if k is low (e.g., 2), the community returned
(e.g., C2 in Fig. 1) does not have high cohesiveness. Similarly, given
a query vertex, [8] only returns the desired community under
specific constraints of parameter values (e.g., C4 in Fig. 1 with
parametersm ≤ 6 and p = 2), which is impractical for an external
user. Thus flexibility in parameters while searching for influential
communities is crucial.

Third, the influence of a community is defined as the mini-
mum influence among all members in [7]; thus, a member with
low influence can severely affect the influence of a community.
For example, in Fig. 1, C3 is a 2-core community, containing a
few highly influential members n1, n2, n4 and a few members
with less influence. If we use the minimum influence measure
to estimate the influence of C3, the score will be 0.2 (because of
the least influential member n6). Additionally, according to the
minimum influence measure, C2 is significantly more influential
than C3 (score 0.7 vs 0.2). Despite C3 having more (or com-
parable) influential researchers than C2, C3 is heavily punished,
just because the influential members are collaborating with a
few less influential members. We argue that such a measure is
discouraging collaboration.

To fill the above research gaps and to support a new set of
applications, we propose a novel influential CS query, namely
Top-r Keyword-aware Influential Community Query (KICQ), on an
attributed graph, where vertices (i.e., users) are augmented with
attributes (i.e., keywords). To motivate the application scenarios
of the KICQ, let us consider the following applications: (i) A
prospective Ph.D. student may want to search for strong (i.e., in-
fluential) research groups in her areas of interest from a research
network. Fig. 1 presents such a scenario. Here, vertices n1–n20 are
uthors who published papers in field of studies relevant to ‘‘Ma-

hine Learning (ML)’’, ‘‘Database (DB)’’, and ‘‘Pattern Recognition

2

(PR)’’. The student may be interested in finding the most influ-
ential community who are working in ‘‘ML’’ or ‘‘DB’’. The KICQ
eturns the community C3 as shown in Fig. 1 as the most influen-
ial community (see Section 3.2 for the influential metric) since
he members of the community have influence in either ‘‘ML’’ or
‘DB’’, the community is dense and also contains highly influential
embers. (ii) In the context of traditional social networks such
s Twitter, we can represent the network as an attributed graph,
here a user is connected with her friends/followers, and her
opics of interest can be extracted from her posts/likes/shared
ontents. From such a graph, one may want to find the most influ-
ntial communities for given keywords like ‘‘music’’ or ‘‘movie’’.
iii) Similarly, in the location-based social networks, one can find
nfluential tourist groups who frequently visit a set of locations,
.g., ‘‘Rome’’ and ‘‘Milan’’.
A major challenge in realizing such a query (i.e., KICQ) comes

from the fact that communities and their influences need to be
computed and compared on the fly based on the set of key-
words in the query, and thus existing pre-computation based
approaches are not suitable for our purpose. Our major contri-
butions are the following:

First, we design KICQ in such a way that enables users to
issue an influential community search query intuitively by merely
using a set of query terms (words or phrases), and predicates
(AND or OR) (addressing the first limitation). In this context,
we propose a novel word-embedding based keyword similarity
model that enables semantic community search, which substan-
tially alleviates the limitations of exact keyword based community
search.

Second, we propose a new influence measure for a community
hat considers both the cohesiveness and influence of the com-
unity and eliminates the need for specifying values of internal
arameters of a network (addressing the second limitation). We
ropose an influence measure that captures the influence in a
etter intuitive sense rather than the influence of the commu-
ity being dominated by the minimum influence of a member
addressing the third limitation). (Section 3.2)

Third, we solve the problem of keyword-aware influential
ommunity search by proposing two efficient techniques: (i)
ranch-and-bound based pruning that uses the derived bounds
rom already explored communities to effectively prune the com-
unities that cannot be a part of the answer set, and (ii) an index-
ased approach, where we design an index, KIC-tree, to orga-

nize the keywords, communities, and related lower and upper
influence score bounds, to quickly find the desired communities
from a large scale attributed graph. (Section 5)

Fourth, we conduct comprehensive experiments and a case
study to show that our algorithms are highly efficient and ef-
fective in retrieving keyword aware influential communities. We
share the datasets and additional technical details to help future
works in this direction. (Section 6)

M.S. Islam, M.E. Ali, Y.-B. Kang et al. Information Systems 104 (2022) 101914

T
E

r
‘
(
b
c
a

s
o
h
w
a
a
t
m
e
i

g
v
n
o
g
f
m
d
A
w
b
n
m
r
o
r
w
k

c
a
c
a
h
s
t
r
t
t
c
k
m
a
s
a
s
o

c
c
e

e

s
n
t

t
t
{

b
n

able 1
xisting community search works.

Domain Non-attributed graph Attributed graph

Keyword Others

Basic CS [1,24–29] [4,6,9,10,30,31] [5,32–34]
Influential CS [7,8,21–23] – [35]

2. Related works

Finding communities from a large graph has been an engaging
esearch direction for a long time. Although the definition of
‘community’’ varies among different studies, cohesive subgraphs
e.g., maximal cliques [11], k-core [12], and k-truss [13]) form the
asis of modeling communities. The task of finding communities
an be divided into two major classes: community detection (CD),
nd community search (CS).
In CS, communities are defined based on a query, and CS

olutions aim to efficiently find communities given a query in an
nline manner. CD methods usually use global criteria (e.g., co-
esiveness) to detect all the communities from an entire graph,
here the focus is more on quality than efficiency. Link based
nalysis was popular in initial CD studies [14] that do not consider
ttributes in a graph. Clustering based techniques [15–18], and
opic modeling [19,20] are used in recent studies to detect com-
unities in attributed graphs. However, none of the CD studies
nables a user to find specific communities of her interest, which
s the main focus of our work.

Referring to Table 1, the basic CS works on non-attributed
raphs focus on finding communities from the graph that contain
ertices given in the query. These studies mostly focus on the con-
ectivity among the members and do not consider the influence
f individuals. The notion of influential CS (on non-attributed
raphs) was introduced by [7], where vertices are assigned an in-
luence score, and the influence of a community is modeled as the
inimum influence of the members. Later works [21] and [22]
evelop faster algorithms to solve the influential CS problem.
lso, [23] studies influential CS in an undirected weighted graph,
here the weight of an edge represents the semantic intimacy
etween two vertices. A more recent work [8] defines a commu-
ity in terms of kr-clique and designs algorithms to retrieve the
ost influential community. However, all of these studies ignore

ich information of vertices (e.g., keywords denoting expertise
f users) found in attributed graphs. Additionally, these studies
equire several vertices or internal parameters as part of a query,
hich is very difficult for a user who does not have enough
nowledge of the graph.
There are several CS works on attributed graphs that do not

onsider the influence of users. For example, [4] proposes the ACQ
lgorithm to find subgraphs satisfying structural and keyword
ohesiveness; [6] explores attribute driven CS in terms of k-truss;
nd [32] studies CS in an attributed graph where each vertex
as a profile consisting of a set of keywords arranged in a tree
tructure. Another work [30] employs keyword search techniques
o facilitate CS in attributed graphs. However, these studies also
equire a set of vertices and/or internal parameters as part of
he query. Few recent works [9,10] study keyword-based CS that
ake a set of keywords as input and return a subgraph as the
ommunity that has the best match with the given set of query
eywords. In these works, the cohesiveness of the subgraph is
easured differently, i.e., k-core in [9], triangle density in [10],
nd average proximity in [31]. To decide a single best-matched
ubgraph, they define functions that consider the presence or
bsence of query keywords and structural cohesiveness in the
ubgraph. These differ ours as they only consider the presence
r absence of keywords in different vertices of the subgraph and
3

annot be adapted for the scenario where we need to rank the
ommunities and each vertex has a certain degree of influence in
ach keyword.
A recent work [35] studies skyline community search where

ach vertex is associated with a d-dimensional influence score.
However, their study is designed for low values of d (i.e., d < 5).
With d = 5, their algorithms require more than 103 seconds
in a graph with half a million vertices. This study cannot be
extended for an attributed graph where vertices are associated
with influence scores in multiple keywords, because there can
be millions of keywords (dimension d) in such an attributed
graph. Also, this approach cannot search communities of specific
interest.

In this study, we aim to solve the influential CS problem in
an attributed graph, where vertices are attributed with keywords
denoting their areas of expertise, and each vertex is associated
with an influence score for every keyword. To the best of our
knowledge, this is the first influential CS study that allows an
external user to provide her areas of interest in terms of a set
of keywords and a predicate (AND/OR), and retrieves the most
influential communities based on these keywords.

3. Problem definition and system overview

In this section, we formally define keyword-aware influential
community and our proposed community search query. Then,
we introduce a scoring function to measure the influence of
a community. Finally, we give a brief overview of our entire
end-to-end system.

3.1. Keyword-aware influential community

We first define attributed graph which represents the under-
lying social network. Then we define influential community in
terms of maximal k-core structure, followed by our community
search query and a formal definition of keyword-aware influential
community.

Definition 1. An attributed graph G+(V , E, A) is an undirected
graph, where V is the set of vertices and E is the set of edges.
Each vertex v is associated with an attribute — a set of tuples
of the form Av = {(wi, sv(wi))}, where wi is a keyword and
sv(wi) ∈ [0, 1] is the influence score of vertex v in keyword wi.

Here, the influence of a vertex associated with a keyword de-
notes the global significance of the vertex on the entire network
considering the keyword. More specifically, we use the influence
score s to denote a percentile rank, i.e., the vertex has more ex-
pertise (in the corresponding area denoted by the keyword) than
s × 100% of the population. The computation of these influence
cores can be domain-specific (e.g., in an academic network, the
umber of publications and citations in research areas relevant to
he keyword can be used).

For example, Fig. 1 represents an attributed graph with ver-
ices {n1, n2, . . . , n20}. The attribute of each vertex represents
he expertise of the vertex. For instance, the attribute of n1,
(DB, 0.7), (ML, 0.8)} denotes that vertex n1 has expertise in DB
(database) and ML (machine learning). In addition, n1 has more
expertise than 70% researchers in the database community, and
80% researchers in the machine learning community.

Definition 2. Let H be a subgraph of G+, induced by the set of
vertices VH ⊆ V . Let the degree of a vertex v in H be denoted
y degH (v). H is a k-core if ∀v∈VH degH (v) ≥ k, where k is a
on-negative integer. H is a maximal k-core if there is no super k-

core in G+ that contains H . The influential communities are the
connected components of maximal k-cores, where the influence
is defined by Eq. (2) (see Section 3.2). k is termed as cohesion

factor in this paper.

M.S. Islam, M.E. Ali, Y.-B. Kang et al. Information Systems 104 (2022) 101914

v
d
o
m
{

a
c
a
m
b
i

m
t
c

D
q
o
q
c
n
K
a
t

t
s
a
F
3

D
K
n
v
k
i
d

o
f
o
i
p
k
c
c

(
e
A
t

3

H
f

p
n

b
γ
a
s
m
o
F

γ

r
t
e
w
p
h
r

a
H
i
t

ζ

B
n

i
c
w

In the attributed graph in Fig. 1, the subgraph induced by
ertices {n3, n4, n6–n8, n10–n20} forms a maximal 3-core — the
egree of every vertex in this subgraph is at least 3, and all the
ther distinct 3-cores are subgraph of this. The influential com-
unities are the two connected components of this subgraph:

n3, n4, n6–n8} and {n10–n20}.
Other structures like k-truss, k-clique, etc. can also represent

community. Compared to other commonly used structures, k-
ore is significantly more efficient in terms of computation time
nd comparable in terms of the quality of the represented com-
unities [36]. So, in an online setup where communities need to
e retrieved quickly based on queries, k-core is widely accepted
n the literature.

A keyword-aware influential community is an influential com-
unity with additional keyword constraints imposed on the at-

ributes of the vertices in the form of a keyword-aware influential
ommunity query, KICQ .

efinition 3. Let G+(V , E, A) be an attributed graph, q(T , P) be a
uery tuple where T = {t1, t2, . . . , tn} is a set of terms (i.e., words
r phrases) and P is a predicate (AND, OR) for conjoining the
uery terms. Let kmin be the minimum cohesion factor for being a
andidate community, and r be a positive integer specifying the
umber of top communities to be returned. Then, we form the
ICQ as a quadruple (X, P, r, kmin), where X = {Xt1 , Xt2 , . . . , Xtn}

nd Xti is the set of semantic keywords (see Section 4.1) of term
i.

Let a query tuple be ({‘‘machine learning for database sys-
ems’’, ‘‘image processing’’}, AND), and the user is willing to
earch top-3 influential communities (r = 3). Let, kmin = 2 be
default value for all users. Considering the attributed graph in
ig. 1, the corresponding KICQ will be ({{ML, DB}, {PR, ML}}, AND,
, 2).

efinition 4. Given a query tuple q(T , P) and the corresponding
ICQ (X, P, r, kmin) query, a keyword-aware influential commu-
ity is a connected component of a maximal k-core, where each
ertex of the k-core must have non-zero expertise in some of the
eywords in Xti (for all i = {1, 2, . . . , n} if P = AND; for some
= {1, 2, . . . , n} if P = OR). The influence of the community is
efined by Eq. (2).

For example, for the above-mentioned AND query, we will
nly consider vertices with expertise in both ‘‘machine learning
or database systems’’ (ML or DB) and ‘‘image processing’’ (ML
r PR). {n3, n4, n6–n8, n10–n20} is no longer the desired max-
mal 3-core since some of the vertices do not have the ex-
ertise (e.g., n20 has no expertise in ML or DB). The desired
eyword-aware maximal 3-core is {n3, n4, n6–n8}, which is also a
onnected component, and thereby a keyword-aware influential
ommunity.
Note that, we define KICQ to support a single predicate P

AND/OR) for the sake of simplicity. Our methods can be easily
xtended for the case where keywords are combined using both
ND, OR at the same time, without hurting the performance of
he search algorithms.

.2. Influential community measures

The influence measure of a community is mostly subjective.
owever, we suggest that the following properties are desired
rom an influential community:

1. Connectivity. A good community must be connected.
2. Cohesiveness. The cohesion of a community is defined as

the number of nodes that need to be removed to disconnect
it. A community is desired to have high cohesion and
therefore high density.
4

3. Highly influential individuals. A good community should
consist of individuals who are highly influential in their
field of expertise.

4. Large. Large communities are preferred if the connectivity
and high cohesion of a community can be retained.

We design a scoring function that considers these desired
roperties and assigns a score for ranking the candidate commu-
ities given a query.
First, for a given query, we redefine the influence of a vertex

ased on its relevance to the query. The query relevance score
v of a vertex v is estimated as follows: each vertex v in the
ttributed graph is annotated with keywords and their influence
core for the corresponding keywords, i.e., (wi, sv(wi)). To esti-
ate the relevance score, γv ∈ [0, 1], we need to consider the list
f semantic keywords X and the predicate P in the KICQ query.
ormally, we use the following definition for computing γv:

v = fXti∈X [gw∈Xti
sv(w)] (1)

Here, f and g are two aggregate functions: g combines the
elevance of the vertex for the semantic keywords of a query
erm, and f combines the relevance scores in all terms consid-
ring the predicate P . We use g as the aggregate function, MAX;
hereas we use f as MIN for AND predicate and MAX for OR
redicate, respectively. MIN aggregate ensures that a vertex has
igh relevance to all the terms, while MAX only requires high
elevance to any of the terms.

Now, we use a linear weighted summation of the cohesiveness
nd influences to calculate the overall score of a community. Let
= (VH , EH) be a subgraph of attributed graph G+(V , E, A). If H

s a community (connected component of maximal k-core), then
he score of H is:

(H) = β ×
k

max-deg(G+)
Cohesiveness score

+(1 − β) ×

∑
v∈VH

γv

|V |
Influence score

(2)

Here, max-deg(G+) is the maximum degree of all vertices in G+.
oth the cohesiveness and the influence score of a community are
ormalized within [0, 1], and the preference parameter β ∈ [0, 1]

defines the importance of one score relative to the other.
Since we model a community using connected k-core, con-

nectivity, and cohesiveness are ensured. max-deg(G+) and |V |

s constant for attributed graph G+. Thus the influence score of
ommunity H depends on the sum of influential scores

∑
v∈VH

γv

hich prefers large communities with highly influential indi-
viduals. Although it may allow some low influential members
to be included, as long as they do not disrupt the cohesiveness
of the community, the score of this community is not penalized,
which is the case in [7]. We acknowledge that such a measure is
not unique, and other measures can be explored in the future.
However, experiments and the case study using real datasets
(presented in Section 6) demonstrate that our proposed influ-
ence measure can capture cohesive communities with highly
influential members.

3.3. Parameters

We ensure that the users can issue a query without any knowl-
edge of the internal graph structures. Any user can simply raise a
query q(T , P) by specifying a set of terms he/she is interested in
(T), and conjoining the keywords with a predicate (P = AND/OR).
However, to convert the query q(T , P) into a KICQ (X, P, r, kmin),
we require two additional parameters r and kmin. In addition, the
influence measure requires an additional preference parameter β .
All these parameters can be set to a default value for a particular
attributed graph or can be treated as optional parameters for

the users. This way, we enable users to customize the results by

M.S. Islam, M.E. Ali, Y.-B. Kang et al. Information Systems 104 (2022) 101914

s
r
t
v
e

a
b

i
l
a
d
a
a

t
t
o
c
c
r
g

3

v
t
o
c
p

W

e
w
c
i
s
v
s

a

Fig. 2. The overview of our system.

etting the optional parameters, also making sure users are not
equired to input any parameter to raise a query. Here we discuss
he effects of each parameter and how to choose their default
alues. The effects of these parameters are further studied with
xperiments in Section 6.3.3.
r: r is the number of top communities to be returned by the

lgorithm. r only affects the running time of the query and can
e set to any suitable default value (e.g., 3).
kmin: The parameter kmin imposes a minimum cohesiveness

constraint on a candidate community — a connected component
of a maximal k-core will only be considered as a candidate in-
fluential community, if the value of k is at least kmin. If kmin
s too small (e.g., 1), some of the returned community might
ack cohesiveness, while if the value is too large (e.g., 50), the
lgorithmmay fail to return a community (if the underlying graph
oes not contain a 50-core satisfying the query). kmin can be set to
default value by a super-user who knows the graph structure,
nd it can be an optional parameter for the general users.

β: The preference parameter β ∈ [0, 1] determines the rela-
ive importance of cohesiveness score and influence score. If β is
oo low (β ∼ 0), only the influence score determines the ranking
f the community, and the returned top communities might lack
ohesiveness. On the contrary, if β is too high (β ∼ 1), only the
ohesiveness (k) determines the ranking of the community. We
ecommend setting β to a default value for a particular attributed
raph as demonstrated in Section 6.3.2.

.4. System overview

Our system overview is presented in Fig. 2. It is mainly di-
ided into two phases. First, we construct a keyword-aware at-
ributed graph from a social network corpus. Second, we focus
n searching keyword-aware influential communities using the
onstructed attributed graph, given a query as a set of terms and
redicates.
The distinctive features of the first phase are as follows: (1)
e build an attributed graph from a domain corpus by extracting
5

ntities of possible vertices and edges to represent the social net-
ork. Each user is associated with a set of keywords based on the
ontents of the user in the network. (2) To enable keyword-aware
nfluential community search, we augment keywords with their
emantically related terms and keywords using word embedding
ectors [37] as an external knowledge source. The output of this
tep is a graph, called keyword-aware attributed graph.
We briefly describe the second phase as follows: (1) Initially,

user raises query q(T , P) consisting of a set of query terms T ,
and a predicate P . The terms T need to match with the key-
words in the attributed graph to find meaningful communities.
We acknowledge the difficulty faced by the users to put the
exact terms while raising a query, and therefore, augment each
query term with a semantically meaningful set of keywords. The
output of this step is a KICQ . (2) Given a KICQ query, we find
the relevance scores of vertices to the query (Eq. (1)), which are
used to compute the scores of potential influential communities.
We argue that a measure that rewards both the cohesiveness of
the community and the high influence of the members, and does
not require user input of any internal parameters (e.g., k in k-
core) is more preferable than the existing influence measures.
We propose a linear weighted summation of the cohesiveness of
the community and the total influence of the members of the
community to estimate the overall score of a community. (3)
Given the augmented query and the influential score function,
our focus is now to retrieve top-r most influential communi-
ties relevant to the query. Since we are the first to propose
the keyword-aware influential community search problem, and
existing pre-computation based approaches are not suitable to
retrieve communities for any given query, we first present a
baseline solution named BASIC-EXPLORE followed by two novel
efficient algorithms: PRUNED-EXPLORE and TREE-EXPLORE.

4. Keyword augmentation

In a social network, one’s expertise can be represented by a
collection of terms (words or phrases). There are millions of such
terms in a large network and it is difficult for users to come out
with the exact terms while raising a query. We propose a seman-
tic keyword similarity model that can augment any term with
relevant keywords. This model is used to extend the keywords
in the attributed graph, and associate appropriate keywords for
each term in the query.

4.1. Semantic keyword similarity model

Finding semantically related keywords of a term is not triv-
ial. Two or multiple terms with slight syntactic difference can
indicate the same keyword (e.g., ‘‘error detection and error cor-
rection’’ and ‘‘error detection and correction’’). Even two different
terms can represent the same keyword (e.g., ‘‘AI’’ and ‘‘artifi-
cial intelligence’’) or can be semantically similar (e.g., ‘‘neural
network’’ and ‘‘deep learning’’).

We adopt Word2Vec [37] model to generate a vector (se-
mantic representation) of any given word. We train this model
with a domain corpus after stopword removal, tokenization, and
lemmatization [38]. If keyword/term contains multiple words,
the representative vector is formed using the average of the
embedding vectors of the constituent words. In this case, using
the summation of the embedding vectors is also common in the
literature. However, using the average helps to keep the vectors
normalized.

Now, given any two terms t1 and t2, we denote their embed-
ding vectors as xt1 and xt2 , respectively. To estimate a similarity
between these two terms, denoted as S(t1, t2), we can use widely
used cosine similarity of their embedding vectors x , x [39].
t1 t2

M.S. Islam, M.E. Ali, Y.-B. Kang et al. Information Systems 104 (2022) 101914

W
w

s
i
w
F
o
w
s
f
a

r
i
v

4

k

m

T
t
f
l
‘
l
i
i
i

a
t
T
k
w

5

g
s
r
c
i
t
c

i
K

w
c

v
o
t
w
g

e also propose indirect cosine, a new similarity measure,
hich yields an attributed graph of better quality:
indirect cosine: Given a term t , its vector V t is denoted as

V t
= [(wt

1, s
t
1), (w

t
2, s

t
2), . . . , (w

t
L, s

t
L)], where wt

i is the ith most
imilar word to xt , sti is the corresponding similarity score, and L
s the number of similar terms of t . Given two terms t1 and t2,
e construct a vocabulary, U combining words of V t1 , and V t2 .
ormally, U = {w : (w, s) ∈ V t1 or (w, s) ∈ V t2}. To simplify
ur notation, let U = {w1, w2, . . . , wn}, where n = |U |. Now,
e define another vector SV t

= [s1, s2, . . . , sn], where si is the
imilarity score of term t to word wi ∈ U , which can be found
rom V t . If (wi, si) /∈ V t , si is set to 0. Finally, S(t1, t2) is calculated
s the cosine similarity of SV t1 and SV t2 .
Finally, for any term t , we calculate its similarity with all the

keywords in the given attributed graph and find M-top most
elevant keywords Xt ranked based on the similarity scores. M
s a configurable parameter (based on empirical analysis, default
alue is set to 10).

.2. Augmenting keywords for KICQ in attributed graph

In attributed graph G+, a vertex v is associated with a set of
eywords. For all vertices, we extend each keyword t with its

M-top most relevant keywords Xt using the semantic similarity
odel. For any keyword w ∈ Xt , we model the influence score

of vertex v, sv(w) = sv(t) since w and t are semantically similar.
o illustrate, assume that an author has published a paper with
he keyword ‘‘neural network’’, and our semantic similarity model
inds that ‘‘neural network’’ and ‘‘machine learning’’ are simi-
ar. So, all publications, citations, and impact with the keyword
‘neural network’’ can also be counted for the keyword ‘‘machine
earning’’. Thereby, the influence score for two semantically sim-
lar keywords can be the same. However, we can also assign the
nfluence score considering the degree of semantic similarity, but
t is not discussed further for the simplicity of presentation.

A query q(T , P) consists of a set of terms T = {t1, t2, . . . , tn}
nd a predicate P . First, the semantic similarity model is used
o augment each term ti with the set of relevant keywords Xti .
hen the system parameters r and kmin are used to formulate the
eyword aware influential community query, KICQ (X, P, r, kmin)
here X = {Xt1 , Xt2 , . . . , Xtn}.

. Algorithms

Existing studies on influential CS [7,8] focus on non-attributed
raphs and thus do not allow users to customize the community
earch using a set of keywords. If we want to modify these algo-
ithms to answer the KICQ, one possible way is to pre-compute
ommunities for all possible combinations of keywords, which is
mpractical due to an exponential number of keyword combina-
ions. Moreover, for each combination, the notion of influential
ommunity changes.
In this section, we present algorithms for finding r most

nfluential communities from the attributed graph G+ for a given
ICQ (X, P, r, kmin). We first provide a basic solution, BASIC-

EXPLORE, followed by our first branch-and-bound algorithm,
PRUNED-EXPLORE. Finally, we design a novel index (KIC-tree)
that directs us towards a novel, efficient, and scalable online
search algorithm, TREE-EXPLORE.

5.1. A straightforward approach, BASIC-EXPLORE

A straightforward approach to answer KICQ on a large graph
is as follows. First, we extract the subgraph, which we call the
query essential subgraph, Gq, containing vertices and edges that are
relevant to the query. Then we find all the connected components
6

of maximal k-core subgraphs for all possible values of k. Finally,
e return the top r communities having the highest influential
ommunity scores as per Eq. (2).
Finding Gq. The query essential subgraph, Gq(Vq, Eq, γ) is a

subgraph of the attributed graph G+(V , E, A) induced by Vq, the
set of vertices with a non-zero query relevance score. In Gq, each
ertex v is annotated with its relevance score γv , and Eq is the set
f edges between any two vertices in Vq. To efficiently generate
he Gq, we maintain an inverted index, where for each keyword
, a list ILw of the vertices that contain w is stored. Thus, for a
iven KICQ query, Vq can be obtained by,

Vq =

{⋂
Xti∈X

[
⋃

w∈Xti
ILw], if P = AND⋃

Xti∈X
[
⋃

w∈Xti
ILw], otherwise

(3)

After retrieving Vq, we compute the query relevance score of
each vertex v ∈ Vq (Eq. (1)) and retrieve Eq that denotes the
connections between all pairs of vertices in Vq.

Finding k-cores and most influential communities. First, we
compute core decomposition for all vertices in Gq using the
O(|Eq|) algorithm proposed by Batagelj et al. [40]. A priority
queue Q is used to hold our solution. We initialize Q with r
empty communities having 0 score. In our case, a community
must be at least kmin-core. Again, the maximum cohesion factor
of a community in Gq can be max-deg(Gq), since there is no
vertex in Gq with a higher degree. Thus we need to first find
all connected components of maximal k-cores from Gq, where
the value of k is in range [kmin,max-deg(Gq)]. Then, we compute
the influential scores of each computed community, and finally,
maintain the top-r communities in Q ordered by the scores of the
communities.

Time complexity. Finding the relevance of vertices can be done
in O(|Vq| × Nw) time, where Nw =

∑
Xi∈X

|Xi|. If the graph is
implemented with adjacency list, Eq can be obtained in O(|Vq|)
time. So, time complexity for computing Gq is O(|Vq| × Nw).
Core decomposition of Vq is done in O(|Eq|) time. Exploring a
maximal k-core requires computing its connected components
(O(|Vq| + |Eq|)), obtaining k-core vertices (O(|Vq|)), and comput-
ing scores of each connected components (O(|Vq|)). The cost of
queue maintenance is inferior compared to other components.
So, if Nk is the number of candidate communities with cohesion
factor k, then the runtime of exploring all k-cores is bounded by
O(max-deg(Gq)× (|Vq|+|Eq|+Nk×|Vq|)), that can be simplified as
O(max-deg(Gq) × |Vq|

2) for a dense graph.2 Since, this dominates
the time complexity of finding Gq, the overall complexity of
BASIC-EXPLORE is O(max-deg(Gq) × |Vq|

2).

5.2. Pruned exploration approach, PRUNED-EXPLORE

The major bottleneck of BASIC-EXPLORE is that it needs to
explore all maximal k-cores, for different values of k, and find
the connected components of each maximal k-core subgraph.
Such exploration is computationally expensive for a large graph.
Instead of directly exploring the subgraphs to compute the max-
imal k-core and its connected components (communities), we
first estimate the upper bound score of the communities of the
corresponding subgraph. This bound can be used to prune a large
number of redundant subgraphs that cannot be a part of the top-r
influential communities.

First, we find the query essential subgraph Gq, compute core
decomposition, and initialize priority queue Q as described in
Section 5.1. Now, we need to explore Gq to retrieve communities
for all possible values of k. As discussed before, the value of k
must be between kmin andmax-deg(Gq). We propose the following
lemmas, which pave the foundation of our pruning.

2 N < |V | and for any dense graph G(V , E), |E| is O(|V |
2).
k q

M.S. Islam, M.E. Ali, Y.-B. Kang et al. Information Systems 104 (2022) 101914

i
r
v
s

ζ

m
m

b
c
c

s
t
t
t
h

h
d
I
s
c
T
t
t
c
L
u
W
c

5

p
h
c
n
l
c
c
c
k

f

b
t
k

c
k
p
a

n
u
t

T
a
f
c
s
f
s
n

5

o
c
(
r

a
r
t
r
t
i
e

a

g
o
c
c
a

l

k

n
c
c
c

n
b
v
f

t
a
n⋃
Algorithm 1 PRUNED-EXPLORE (H , k)
Input: Subgraph of Gq H = (VH , EH), cohesion factor k.
1: k = min(k,min-deg(H))
2: CCk

= connected components of maximal k-core in H
3: for all h ∈ CCk do
4: if score of h, ζ (h) > rth best score then
5: remove the last item and insert h in Q
6: for k′

= k + 1 to max-deg(Gq) do
7: if upper bound score, ζ ∗

k′ (h) > rth best score then
8: PRUNED-EXPLORE(h, k′)
9: break

Lemma 1. Let H(VH , EH) be a subgraph of Gq. For any community
n H, the maximum influence score can be the sum of the query
elevance scores of all vertices in H. Thus, without computing the
ertices of k-core subgraph, we can calculate the upper bound of the
core of any community in H for a particular value of k as follows.

∗

k (H) = β ×
k

max-deg(G+) + (1 − β) ×

∑
v∈VH

γv

|V |
(4)

Lemma 2. If H = (VH , EH) is a subgraph and min-deg(H) =

inv∈VH (degH (v)) > k, then any community in H must be at least
in-deg(H)-core.

According to Lemma 1, we can prune a subgraph if its upper
ound score is lower than the rth best score of already retrieved
ommunities from Gq. Moreover, Lemma 2 helps us to avoid the
omputation of certain cores from Gq.
Now, we develop a recursive procedure pruned-explore to

earch for influential communities in Gq. Algorithm 1 outlines
he procedure. Initially, pruned-explore(Gq, kmin) is called to ex-
ract communities with minimum cohesion factor. In later steps,
he procedure is recursively called to extract communities with
igher cohesion factors.

Let us consider that we want to find communities with co-
esion factor k, from a subgraph H(VH , EH) of Gq. In line 1, we
etermine the minimum degree of the vertices in H , min-deg(H).
f min-deg(H) > k, we set k = min-deg(H) and directly compute
uch k-cores (according to Lemma 2). In line 2, we find the set of
onnected components of maximal k core of H , denoted by CCk.
he loop in line 3 runs for each connected component. We update
he priority queue if any connected component’s score is higher
han the current top-r communities in lines 4–5. We explore the
onnected component for higher values of k in lines 6–9. We use
emma 1 to prune exploration for the values of k for which the
pper bound of the score is lower than the rth best community.
hen the procedure terminates, the queue holds the final top-r

ommunities.

.3. Keyword indexed tree exploration, TREE-EXPLORE

Though the above PRUNED-EXPLORE is efficient, it still ex-
lores subgraphs and their connected components with low co-
esiveness, which usually do not contain the most influential
ommunities. This exploration can be costly, especially in a sce-
ario where the query essential graph, Gq, turns out to be very
arge. So, we propose a novel index, namely keyword indexed
ore-label tree (KIC-tree), that pre-computes and organizes the
onnected components of maximal k-core subgraphs hierarchi-
ally with computed upper bound of influence scores for each
eyword.
The key idea of our KIC-tree based KICQ comes from the

ollowing observations:
 u

7

(i) Top communities are structurally cohesive and thereby can
e retrieved by exploring the subgraphs of higher cohesion fac-
ors. Thus, if k-cores are precomputed, disregarding the associated
eywords, we can still prune the subgraphs with a low k value.
(ii) Communities are represented using connected maximal k-

ores which are nested, i.e., by definition, a (k + 1)-core is also a
-core (k ≥ 0). This property helps to store all the connected com-
onents of maximal k-cores in compressed tree-based structures
s shown in previous works ICP-index [7], CL-tree index [4].
(iii) We can compute the upper bounds for both the compo-

ents: influence and cohesiveness, of the scoring function, and
se these upper bounds to prune the search space during query
ime.

We first discuss the basic structure of the KIC-tree index.
hen we present the upper bounds for individual keywords and
ggregate them for a set of keywords and predicates (in KICQ)
or an upper bound score of a node. We also show how the
ohesiveness score can be bounded based on a pre-computed
tructure alone. Finally, we present our TREE-EXPLORE algorithm
or influential community search using the KIC-tree. In this
ection, we use the term ‘‘node’’ to exclusively indicate a tree
ode.

.3.1. KIC-tree index
The KIC-tree index organizes the connected components

f k-cores into a space-efficient tree structure. We adopt the
oncept of the compressed tree-based structure of previous works
e.g., CL-tree index [4]), and augment the structure with de-
ived bounds to prune the search space.

Fig. 3 shows an example KIC-tree for the subgraph shown
s the shaded region in Fig. 1. The left shows the hierarchical
epresentation of all maximal k-core connected components in
he subgraph. We refer this tree as the uncompressed tree. The
ight figure shows KIC-tree index, a more compact represen-
ation of the left tree, which removes the graph vertices present
n its descendant nodes ensuring that each graph vertex appears
xactly once.
Let u be a KIC-tree node and subtree(u) be the subtree rooted

t u. The structure of u is as follows:
(i) k, the cohesion factor; (ii) vertexSet , the set of compressed

raph vertices at node u; (iii) childNodes, the set of child nodes
f u; (iv) kmax, the maximum cohesion factor of any connected
omponent contained by the subtree(u); (v) iList , an inverted list
ontaining the upper bounds of influence scores for all keywords
ppeared in subtree(u).
For each keyword w that appears in subtree(u), the inverted

ist u.iList[w] contain the following elements:
(i) relV , a set of graph vertices in u.vertexSet containing the

eyword w;
(ii) maxKNScore, the upper bound of influence score compo-

ent by only considering keyword w in a community (i.e., a
onnected component) contained by the subtree(u), where the
ommunity must include at least one vertex present in node u
ontaining the keyword w;
(iii) maxKDScore, the upper bound of influence score compo-

ent by only considering keyword w of a community contained
y the subtree(u), where the community does not include any
ertex from u.vertexSet (i.e., all vertices of the community come
rom the descendent nodes of u).

We compute maxKNScore and maxKDScore as follows.
For a node u, let childV be the set of graph vertices stored at

he descendent nodes of u, and allV be the set of graph vertices
t subtree(u) (i.e., all the vertices in node u and its descendent
odes). If u is a leaf node, u.childV = ∅. Otherwise, u.childV =

p∈u.childNodes p.vertexSet . On the other hand, in all cases, u.allV =

.vertexSet
⋃

u.childV .

M.S. Islam, M.E. Ali, Y.-B. Kang et al. Information Systems 104 (2022) 101914

F

u

Fig. 3. KIC-tree for the subgraph in Fig. 1.
u
i

s
p
[
b
s
S∑
A
f
a

t
a
m

t
m
b
c
m

5

c
n
p
v
q
r
i

Now, if there is no relevant graph vertex in node u for keyword
w, then we set maxKNScore as 0. Otherwise, the upper bound
is the sum of influence scores of all graph vertices in u.allV .
ormally,

.iList[w].maxKNScore =

{
0, if u.iList[w].relV = ∅∑

v∈u.allV (sv(w)), otherwise

Here, sv(w) = influence score of vertex v for keyword w.
Now, maxKDScore is the maximum influence score component

among the communities represented by the descendant nodes
of u. u.iList[w].maxKDScore = 0 if u is a leaf node. Otherwise,
we can use the computed values of maxKNScore to compute the
maxKDScore as follows.

u.iList[w].maxKDScore = maxp∈u.childNodesp.iList[w].maxKNScore

Fig. 3 (right) shows an example tree, where the table inside
the ellipse represents the iList of the corresponding node. For
simplicity, we only show the iList for node u3.

5.3.2. Complexity analysis for index construction:
We use the advanced method proposed by Fang et al. [4] that

compresses the tree and for each node u, computes u.iList[w].relV
for all the relevant keywords of u. The time complexity of this
method is O(|E| × α(|V |)), where inverse Ackermann function,
α(|V |) < 5 for all remotely practical values of |V |. For each
iList[w] entry, we also need to compute the two upper bounds
maxKNScore and maxKDScore. If Amax is the maximum number of
keywords associated with a graph vertex, the time complexity for
computing maxKNScore is O(Amax × |V |). Computing maxKDScore
for a node u only requires visiting its childNodes which is non-
dominant. So, overall time complexity for index construction is
O(|E| × α(|V|) + Amax × |V|).

In iList , we need additional space to store two upper bound
scores (constant space) for each keyword. The space cost is still
dominated by storing relVertices in iList . So, the space complexity
remains O(Ā × |V|) as in [4], which is proportional to the graph
size.

5.3.3. Computing upper bound scores for a query
Given a KICQ (X, P, r, kmin) query, we need to compute two

upper bound scores for any community: the maximum possible
influence score (Sinf) and the maximum possible cohesiveness
score (Sk) by using the precomputed upper bounds in KIC-tree.
Then the upper bound of the total score of that community can
be computed as maxScore = β × Sk + (1−β)× Sinf (as in Eq. (2)).

We define two upper bounds for the communities inside
subtree(u): (i) maxNodeScore, the maximum possible score of
any community that can be exclusively found by exploring the
connected k-core stored at node u and (ii) maxDesScore, the
 u

8

maximum possible score of any community that can be found
by exploring the descendant nodes of u.

Computing maxNodeScore: For any community contained ex-
clusively by node u, there must be at least one vertex v that is
stored at u. Now, for any vertex v exclusive to node u, u.k is the
maximum core number. So, a subgraph containing v can be at
most u.k-core (irrespective of any keyword) and the upper bound
of cohesiveness score of any community contained by the node
can be computed as Sk = u.k/max-deg(G+).

Now, for each keyword w, u.iList[w].maxKNScore defines the
pper bound of influence score component for any community
n the subgraph exclusively contained by node u (considering
the single keyword w). We combine these bounds considering
all the keywords in the KICQ query and compute the maximum
influence score as:

Sinf =
1

|V |
× FXti∈X (

∑
w∈Xti

u.iList[w].maxKNScore)
Here, F is an aggregate function that combines the influence

cores of the community for multiple terms depending on the
redicate P and division by |V | normalizes the score within
0,1]. For the queries with OR predicate, a top community can
e formed by joining multiple communities pre-computed for a
ingle term, and these communities may have disjoint vertex set.
o, it is safe to consider F as a sum aggregate. For the same reason,
is explicitly used to combine the semantic keywords of a term.

gain, for AND predicate, any graph vertex forming a community
or a single term must be present in communities of other terms
s well. So, F can be safely considered as min aggregate.
Computing maxDesScore: For any community contained by

he descendant nodes of u, the maximum cohesion factor is u.kmax
nd the upper bound of cohesiveness score is Sk = u.kmax/
ax-deg(G+).
Again, for keyword w, u.iList[w].maxKDScore already defines

he upper bound of influence score component for any com-
unity contained by the descendant nodes. We combine these
ounds for considering all the keywords in the KICQ query and
ompute the maximum influence score similarly as computing
axNodeScore, i.e.,
Sinf =

1
|V |

× FXti∈X (
∑

w∈Xti
u.iList[w].maxKDScore)

.3.4. TREE-EXPLORE algorithm
We follow a best-first exploration strategy. Since the leaf nodes

ontain the communities with high cohesiveness while nodes
ear root contain communities with low cohesiveness, we ex-
lore the KIC-tree in a post-order manner. Likewise the pre-
ious exploration algorithms (e.g., PRUNED-EXPLORE), a priority
ueue Q initialized with r empty communities is used to store the
esults. The exploration algorithm, which we call TREE-EXPLORE
s developed based on the following pruning techniques:

(i) Subtree pruning: For any node u, we examine the
.maxDesScore before visiting its children. If it is less than the

M.S. Islam, M.E. Ali, Y.-B. Kang et al. Information Systems 104 (2022) 101914

1
1
1

1

c
o

s
t
s
b

m
s

6

e
T
s
a
c
t

6

d
a
a
o
a
c
s

g
v
o
t
t
r
P
i
q

r

c
t
t

g

Algorithm 2 TREE-EXPLORE (u,U)
Input: Tree node u, query relevant nodes U .
1: if u is an internal node then
2: Compute Sinf and Sk to compute u.maxDesScore
3: if Sinf > 0 and u.maxDesScore ≥ rth best score then
4: for each p ∈ (u.childNodes ∩ U) do
5: TREE-EXPLORE(p,U)
6: if u.k < kmin then return
7: Compute Sinf and Sk to compute u.maxNodeScore
8: if Sinf > 0 and u.maxNodeScore ≥ rth best score then
9: u.Vrel = relevant graph vertices in subtree(u)
0: Compute query relevance score of all vertices in u.Vrel
1: Compute u.Erel, the edges among u.Vrel
2: Construct subgraph H(u.Vrel, u.Erel), with each vertex annotated

with relevance score
3: modified-pruned-explore(H , kmin, u.k)

rth best score, then none of the communities to be found in
the descendent nodes can score higher than the current rth top
ommunity. Therefore, we can skip visiting the descendant nodes
f u.
(ii) Node pruning: Before exploring the pre-computed con-

nected k-core subgraph at any node u, we examine the
u.maxNodeScore. If it is less than the rth best score, we can safely
prune this exploration.

Algorithm 2 outlines the pseudocode for the KIC-tree traver-
sal. The inverted list that we have used to find the Gq is adopted
for computing U , the set of tree nodes relevant to a query.
Initially, the recursive procedure tree-explore(u, U) is called with
u being the root of the KIC-tree.

For any internal node u, we first compute the influence score
component Sinf , and the cohesiveness score component Sk of
u.maxDesScore. If Sinf = 0, the descendants of u do not contain any
relevant graph vertex, and therefore we do not need to visit sub-
sequent nodes across the subtree. If Sinf > 0 and u.maxDesScore >

current rth best score, then we visit its children (lines 1–5).
Now we explore the pre-computed connected k-core subgraph

represented by node u. If the cohesion factor k in node u is less
than kmin, we prune exploring the subgraph. Else, we compute
the influence score component Sinf and the cohesiveness score
component Sk of u.maxNodeScore. If Sinf = 0, then the node
does not contain any relevant graph vertex, and we can safely
skip exploring the subgraph. Again, we skip the exploration if
u.maxNodeScore is less than the current rth best score.

If the exploration of the connected k-core subgraph cannot be
pruned, we first need to find all the relevant graph vertices, u.Vrel
present in the subgraph. Since KIC-tree compresses these graph
vertices by removing the ones present at descendant nodes, we
need to decompress in a bottom-up manner. At any node u, the
relevant graph vertices u.Vrel can be computed like the vertices in
QEG (Eq. (3)) just by replacing ILw with u.iList[w].relV . For any in-
ternal node u, we need to add the relevant graph vertices in child
nodes to u.Vrel. Then, we compute the relevance score of each
vertex v ∈ u.Vrel (Eq. (1)) and then compute the edges among
these vertices, thereby construct the subgraph H(u.Vrel, u.Erel) and
explore it for top communities (lines 8–13).

The procedure modified-pruned-explore(H, k, kmax) is a
lightly modified version of the procedure pruned-explore(H, k)
hat takes an extra argument kmax, the maximum value of cohe-
ion factor for sub-graph H . Lines 6–9 in Algorithm 1 are replaced
y the following:
9

6: for k′
= k + 1 to kmax do

7: if ζ ∗

k′ (h) > rth best score then
8: modified-pruned-explore(h, k′, kmax)
9: break

Table 2
Datasets for experimental analysis.
Dataset No. of vertices No. of edges No. of keywords

OAGa 5,000,000 60,800,838 1000
Twitter 140,371 2,283,875 10,000
Gowallab 407,533 2,209,169 2,727,464

ahttps://aminer.org/open-academic-graph
bhttp://www.yongliu.org/datasets/index.html

Since no graph vertex at u belongs to any k-core with cohesion
factor higher than u.k, here kmax = u.k. Initially, k = kmin. So,
odified-pruned-explore(H, kmin, u.k) is called to explore the
ubgraph H (line 17).

. Experiments

In this section, we present experiments on real datasets to
valuate our study. First, we discuss our experimental setup.
hen, we evaluate the effectiveness of our proposed semantic
imilarity model. Finally, we evaluate the effectiveness, efficiency,
nd scalability of our proposed search algorithms, and present a
ase study to demonstrate the quality of the retrieved communi-
ies.

.1. Experimental setup

We first discuss our experimental environment. Then, we
escribe the datasets followed by how the attributed graphs
re generated, and queries are set up for the experiments. We
lso discuss the parameters that may affect the performance
f our proposed algorithms. We have uploaded the constructed
ttributed graphs in a public repository.3 The repository also
ontains a detailed description of datasets, query setup, and the
emantic similarity model and its evaluation.
Our algorithms and all the compared community search al-

orithms are implemented in JAVA. Experiments were run on a
irtual environment of OzSTAR4 supercomputer with four cores
f Intel Gold 6140 CPU 2.30 GHz, and 512 GB RAM. We assume
hat the graph and all the indexes will fit in the memory. For
he simplicity of presentation, we use shorter names for our algo-
ithms: BASIC, PRUNE, and TREE to represent BASIC-EXPLORE,
RUNED-EXPLORE, and TREE-EXPLORE respectively. For present-
ng any statistics of search algorithms, we use an average of 100
ueries.
Datasets: We use three large real datasets (see Table 2) that

eflect real-life application scenarios.
OAG is generated by linking two large academic graphs: Mi-

rosoft Academic Graph (MAG)5 and AMiner6. This dataset con-
ains more than 150 million academic articles with metadata like
itle, abstract, authors, keywords provided by authors, etc. We

3 https://github.com/saiful1105020/KICQ
4 https://supercomputing.swin.edu.au/ozstar/
5 https://www.microsoft.com/en-us/research/project/microsoft-academic-
raph/
6 https://www.aminer.org

https://aminer.org/open-academic-graph
http://www.yongliu.org/datasets/index.html
https://github.com/saiful1105020/KICQ
https://supercomputing.swin.edu.au/ozstar/
https://www.microsoft.com/en-us/research/project/microsoft-academic-graph/
https://www.microsoft.com/en-us/research/project/microsoft-academic-graph/
https://www.aminer.org

M.S. Islam, M.E. Ali, Y.-B. Kang et al. Information Systems 104 (2022) 101914

w

Table 3
Parameters for experimental analysis.
Parameter Range Default

Dataset OAG, Twitter, Gowalla OAG
Size of default dataset (vertices) 500K, 1M, 2M, 3M, 4M, 5M 500K
Query predicate AND, OR OR
r any integer within [1, 5] 3
kmin any integer within [2, 50] 10
skipped non-English articles and the articles with no citation, and
collected 10, 714, 737 articles to construct the attributed graph.

Twitter dataset is a social network graph of 140, 371 users
ith 2, 283, 875 follow relations among the users. This dataset

also contains the tweets published by these users. Due to Twit-
ter’s privacy policy, any dataset revealing both the users and
their tweets can not be shared publicly. However, we share the
processed attributed graph where the users are given unique,
anonymous identifiers.

In Gowalla dataset, users are modeled as vertices, and the
locations (an unique id represents the latitude and longitude of
the location) are considered as keywords. Edges represent the
friendship between two users.

Attributed graph generation: We model keywords to repre-
sent the area of expertise of the users (e.g., ‘‘Database’’, ‘‘Music’’,
‘‘Mount Everest’’). In OAG, author-provided keywords are cap-
tured as the keywords. Keywords in Twitter are extracted from
user tweets by applying lemmatization [41]. In Gowalla, lo-
cations are considered as keywords. We apply our semantic
similarity model to extend the keywords of OAG and Twit-
ter datasets as mentioned in Section 4.1. The influence score
of a user for a certain keyword is modeled as the user’s per-
centile rank considering the number of citations (OAG)/retweets
(Twitter)/check-ins (Gowalla). For example, an author having
0.98 influence score for ‘‘database’’ denotes that, the author has
more citations than 98% of all authors considering the articles
relevant to ‘‘database’’.

Query formulation: To generate a query for OAG and Twitter
datasets, first, we choose a random number (1–5) of query terms
from the most frequent 1000 keywords found in the attributed
graph and then augment each keyword with its similar keywords
using our semantic keyword similarity model. For Gowalla
dataset, we randomly choose a set of locations within a range of
5 km as query terms. Unless specified otherwise, we generate 100
queries as mentioned above, and use the average to present any
result.

Experiment parameters: The parameters shown in Table 3
affects the performance of our algorithms. We evaluate the effects
of these parameters by varying one of them and keeping the
others fixed at their default values.

6.2. Evaluation of semantic similarity model

We presented two approaches (cosine and indirect co-
sine) for finding semantic similarity between two terms or key-
words. Here, we empirically evaluate which approach is the most
effective. We use the 2012 ACM CCS7 taxonomy that contains
2113 topics and organizes them hierarchically based on rele-
vance. Given such a taxonomy, [42] is a widely used approach
to find the semantic similarity between any two topics (used as
the ground truth). In our context, each topic in the taxonomy
can be seen as a keyword or a term, and each of our proposed
similarity measures can be considered as a ranker that finds the
most similar topics to any topic in the taxonomy. So, we adopt
Normalized Discounted Cumulative Gain (NDCG) [43], which is

7 https://dl.acm.org/ccs/ccs_flat.cfm
 m

10
Table 4
Performance of the semantic similarity approaches.
Metric Cosine Indirect cosine

NDCG@50 0.528 0.542
NDCG@20 0.537 0.607
NDCG@10 0.573 0.633

a popular performance measure of ranking systems. NDCG gives
more importance on correctly ranking a more relevant entity than
entities with lower relevance. The goodness of ranking top-M
entities is evaluated by NDCG@M ∈ [0, 1] (1 denoting the perfect
ranking, while 0 being the worst).

We obtain the vector representation of each topic in the tax-
onomy using Google’s pre-trained word2vec model8 that includes
embedding vectors for a vocabulary of 3 million words and is
trained on Google News dataset covering academic research. Ta-
ble 4 shows the comparison among cosine and indirect co-
sine approaches in terms of NDCG@50,NDCG@20,NDCG@10. We
choose the indirect cosine approach, as it outperforms co-
sine.

While using the indirect cosine approach, there is a chal-
lenge in determining a good value for L (see Section 4.1). To
examine this, we use two measures. The first is word coherence,
WC L(V t), which indicates how coherent the L-top words in vector
V t are. The more coherent they are, the better we can repre-
sent the set of keywords. We define the word coherence as the
average pairwise cosine similarity of the L-top words. Also, in
a sense, each L-top words is a cluster containing the relevant
words of a term. So we use Davies–Bouldin Index [44] as the
second measure that optimizes two criteria: (1) minimizing intra-
distance between words and the centroid, and (2) maximizing
inter-distance between keywords. Values closer to zero indicate
a better clustering. The desired value of L should be able to find
a sufficient number of similar keywords and provide high word
coherence and low Davies–Bouldin index. In our experiments,9
we found that L = 15 provides a nice estimation enabling
retrieval of at least 10 similar keywords for a given term in 98%
cases.

6.3. Experimental evaluation

In this section, we present an extensive set of experiments to
evaluate the efficiency and effectiveness of our proposed com-
munity search algorithms. Since there is no existing work that
considers keywords in influential community search, we first
adapt our algorithms to work without keywords and compare
the performance with the state-of-the-art influential commu-
nity search algorithm proposed by Li et al. [7]. This experiment
demonstrates the superiority of our algorithms in terms of query
processing time, and keyword cohesiveness of the retrieved com-
munities. Then, we demonstrate experiments on how to select
a good value for system parameter β (to control the trade-off
between cohesiveness and influence scores) for different datasets.

8 https://code.google.com/archive/p/word2vec/
9 https://github.com/saiful1105020/KICQ/blob/master/semantic_similarity_
odel.pdf

https://dl.acm.org/ccs/ccs_flat.cfm
https://code.google.com/archive/p/word2vec/
https://github.com/saiful1105020/KICQ/blob/master/semantic_similarity_model.pdf
https://github.com/saiful1105020/KICQ/blob/master/semantic_similarity_model.pdf

M.S. Islam, M.E. Ali, Y.-B. Kang et al. Information Systems 104 (2022) 101914

a
a
t
a
d
t
m
i
a
p
w
w
a
d

6

n
a
n
t
k

c
O
a
w
a
k
c

p
t
k
i
h
u
c

6

p
i
n
h

a

i
P
v
E
k
s
O
s

i
p
p
H
d
s
n
s
T
p
I
t
g
T

6

g
r
f
a
t
t
c

t
s
f
w
b

s
o

The OAG dataset is enriched with metadata from millions of
rticles, and better fits the application scenarios of our study,
nd thus we use it as the default dataset. We demonstrate how
he query parameters (kmin, r) affect the performance of our
lgorithms. We also show how our algorithms scale with larger
atasets. Usually, for the queries with AND predicate, most of
he vertices become irrelevant to the query and get filtered out
aking the query essential graph much smaller than for OR pred-

cates. So, queries with OR predicate are more time consuming
nd challenging. Therefore, we primarily select OR as the default
redicate for the experiments. We show that our algorithms
ork well for the queries with AND predicate as well. Finally,
e present an experiment summarizing the performance of our
lgorithms in all the datasets keeping the other parameters at the
efault value.

.3.1. Comparison with state-of-the-art
We compare our algorithms with existing influential commu-

ity search studies. We choose Online-All used in Li et al. [7]
s the state-of-the-art approach as it can find influential commu-
ities in non-attributed graphs. We evaluate the performance of
he algorithms in terms of query processing time (efficiency), and
eyword cohesiveness (effectiveness).
Efficiency: To compare our algorithms with Online-All, we

re-construct the attributed graph as a non-attributed graph by
keeping vertices related to a single keyword (randomly deter-
mined) and removing the others. We also need to input the
cohesiveness parameter k in Online-All. For this, we only con-
sider the top community (r = 1), and the value of k in the top
ommunity returned by our approach is fed to Online-All. So,
nline-All algorithm can return the best k-core community
ccording to the definition of Li et al. [7]. For a fair comparison,
e avoid the other algorithms proposed by Li et al. [7] since these
lgorithms use pre-computed indexes that cannot be adapted for
eyword-aware influential community search. Also, we do not
ompare Online-All with our best approach TREE-EXPLORE,
since TREE-EXPLORE also uses a custom pre-computed index.
We show the query processing times of these algorithms in Fig. 4.
Our algorithms are significantly faster compared to the Online-
All algorithm, especially for the largest OAG dataset (Fig. 4(a)
shows that our algorithms are 4–5 times faster).

Cohesiveness: The effectiveness of a keyword-aware com-
munity can be measured in terms of keyword and structural
cohesiveness. To compare the keyword cohesiveness, we use the
popular community pair-wise Jaccard (CPJ) metric [4]. CPJ mea-
sures the similarity of the members of top communities in terms
of keywords. We form the queries as described in Section 6.1
to evaluate our approach. Li et al. [7] cannot process queries
with keywords; rather, they require a cohesiveness parameter
k as input. For the simplicity of presentation, we denote our
approach as KICQ-AND, KICQ-OR for AND, OR predicates, respec-
tively. Online-x denotes OnlineAll algorithm in Li et al. [7] with
arameter k = x. The comparison is presented in Fig. 5. For
he communities returned by our approach with AND predicate,
eyword cohesiveness is 1.3–10 times higher than Li et al. indicat-
ng that our approach was more successful in choosing members
aving similar expertise. Note that our approach and Li et al. [7]
se the same community model (i.e., k-core), and the structural
ohesiveness is similar.

.3.2. Selecting β for various datasets
We first run experiments to find an appropriate value for

arameter β , which balances the weight of cohesiveness and
ndividual influence (Eq. (2)). Choosing a good value for β is
ecessary because, if β is too large, top communities will be
ighly cohesive but members may have low influence. Again,
11
when β is too small, top communities will contain members with
high influence, but the communities may not be cohesive. To find
a good choice of β , we consider the network structure, that is:
(1) we plot structural cohesiveness measures (i.e., density and
average degree [4]), and (2) use the average influence score of
the members for different β values as shown in Fig. 6.

For OAG, communities with higher cohesiveness seem to con-
tain influential individuals. This can be easily explained by the
fact that an author who has co-authorship with a large number
of authors is likely to have a strong influence in her field of
studies. So, for OAG, we choose a high value of β (i.e., 0.6). For
Twitter, choosing β near 1 (i.e., 0.95) seems to produce highly
cohesive communities, although the average influence is reduced
by a small margin. Similarly, we set β = 0.8 for Gowalla.

6.3.3. Effects of query parameters
The KICQ query takes two additional parameters apart from

the keywords and predicates: kmin denotes the minimum cohe-
sion factor required for a candidate community, and r denotes
the number of top communities to be returned. Here, we present
how these parameters affect the efficiency of our algorithms. Also,
based on the observations mentioned below, we set kmin = 10
nd r = 3 as default while performing other experiments.
Varying kmin: Fig. 7 shows how the query processing time

s affected by parameter kmin. None of the BASIC-EXPLORE and
RUNED-EXPLORE algorithms are significantly affected by the
alue of kmin. However, if kmin is set to a high value, TREE-
XPLORE does not need to explore the tree nodes representing
-cores with lower k values. This enables TREE-EXPLORE to
kip a larger part of the tree since most of the vertices in the
AG dataset has degree less than 10 making TREE-EXPLORE
ignificantly faster for higher kmin values.
Varying r: Fig. 8 demonstrates how the query processing time

s affected by the number of communities to be retrieved (query
arameter r). Both BASIC-EXPLORE and PRUNED-EXPLORE com-
ute core decomposition once on the entire query essential graph.
owever, TREE-EXPLORE performs the core decomposition on-
emand basis. BASIC-EXPLORE is not affected by the value of r
ince it does not use any pruning based on the retrieved commu-
ities. PRUNED-EXPLORE prunes some expansion based on top-r
core, but the query processing time is not noticeably affected.
he effect is more substantial in TREE-EXPLORE. A significant
art of the graph does not require core decomposition if r is small.
f r is high, the algorithm can only prune a few tree nodes, but
he advantage is ruled out by the overhead of decompressing the
raph vertices inside a tree node. However, for small values of r ,
REE-EXPLORE significantly outperforms the other algorithms.

.3.4. Scalability of KICQ
Since, most of the social networks are very large, and also

row rapidly, a good search algorithm must be scalable (w.r.t.
untime and memory). To show the scalability, we consider dif-
erent sizes of OAG dataset by varying the number of vertices
nd thereby edges. We demonstrate how the query processing
ime and memory requirement (index size) are affected when
he network grows in size. We also briefly discuss the pruning
apability of the lemmas introduced in Section 5.2.
Query processing time: Fig. 9 shows that with the increase in

he number of vertices, runtime also increases. TREE-EXPLORE
ignificantly outperforms the other approaches (1.5–4 times
aster than the BASIC-EXPLORE) with a varying number of key-
ords. Also, PRUNED-EXPLORE and TREE-EXPLORE scales much
etter than BASIC-EXPLORE.
Index size: Fig. 10 shows how the size of the graph and corre-

ponding KIC-tree index increase with the increasing number
f vertices and keywords. The result conforms to the complexity

M.S. Islam, M.E. Ali, Y.-B. Kang et al. Information Systems 104 (2022) 101914

a
b
o
g

Fig. 4. Evaluation of efficiency (query processing time).
Fig. 5. Evaluation of effectiveness (keyword cohesiveness).
Fig. 6. Effectiveness for various values of β .
Fig. 7. Effect of varying kmin .
Fig. 8. Effect of varying r .
t
c
i

nalysis demonstrated in Section 5.3.2. Index size is linear to
oth the number of vertices and the number of keywords if one
f these remains unchanged. Also, index size is bounded by the
raph size.
 m

12
Strength of Pruning Lemmas: Although the lemmas used as
he basis of PRUNED-EXPLORE algorithm are simple, they signifi-
antly reduce the running time. The PRUNED-EXPLORE algorithm
s more effective and scales better compared to the baseline
ethod as demonstrated in Fig. 9 while ensuring exact output.

M.S. Islam, M.E. Ali, Y.-B. Kang et al. Information Systems 104 (2022) 101914

W
b
r
b
c
i
p
o

6

w
o
i
o
S
p
s
w
p
t
w
a

6

o
d
a
d
s
c

Fig. 9. Query processing time for varying dataset size.
Table 5
Percentage of candidate communities pruned by the PRUNED-EXPLORE algorithm.

Size of dataset
(No. of vertices)

Pruned candidate communities (%)
Average pruning (%)No. of keywords =

2 3 4 5

500K 52.09 54.88 54.49 50.03 52.87
1M 53.26 62.43 52.74 57.96 56.60
2M 62.92 61.10 69.11 62.05 63.80
3M 65.11 59.83 70.34 61.85 64.28
4M 67.21 60.68 70.00 62.91 65.20
5M 68.05 60.74 70.25 62.87 65.48
Fig. 10. Index size for varying vertices and keywords.

e also compute the number of candidate communities explored
y the BASIC-EXPLORE and PRUNED-EXPLORE algorithms and
eport the percentage of pruned candidate communities in Ta-
le 5. On average, the lemmas can prune 52%–65% candidate
ommunities across different scales of OAG dataset, and the prun-
ng power increases with the growth of the dataset. Also, the
runing lemmas pave the way for the more efficient construction
f the KIC-tree.

.3.5. Performance for AND predicate
We also demonstrate that our approach works well for queries

ith AND predicate. We compute the query processing time of
ur algorithms for the various scales of OAG dataset (mentioned
n Section 6.3.4). For the queries with AND predicate, the number
f relevant vertices is very small compared to the OR predicate.
o, both the BASIC-EXPLORE and PRUNE-EXPLORE require to
rocess a very small query essential graph, thereby, perform
ignificantly faster (10–15× faster on average) than the queries
ith OR predicate. Though the TREE-EXPLORE algorithm has to
rocess the entire pre-computed KIC-tree, which may undermine
he advantage of having a small number of relevant vertices,
e find that TREE-EXPLORE still outperforms the other two
pproaches in all cases.

.3.6. Performance in various datasets
Finally, we present how our algorithms perform in a variety

f datasets. For this evaluation, all the parameters are set to their
efault values. First, we present the query processing time of our
lgorithms in Table 6 to demonstrate the efficiency. In Gowalla
ataset, the number of users for a set of query locations is very
mall, so the runtime is very small for all the algorithms. It is

lear that TREE-EXPLORE algorithm significantly outperforms the

13
Table 6
Query processing time for various dataset.

Algorithms Time (ms)

OAG Twitter Gowalla

BASIC 30477.92 8180.45 2.40
PRUNE 25089.96 7707.77 2.08
TREE 17390.36 7344.49 2.26

Table 7
Structural cohesiveness measures.
Dataset Density Average degree Clustering coefficient Diameter

OAG 0.621 177.897 0.708 2.12
Twitter 0.097 79.343 0.249 3.16
Gowalla 0.579 7.484 0.881 2.70

other algorithms for OAG and Twitter datasets where each query
involves a large number of relevant vertices.

We use popular structural cohesiveness metrics diameter,
density, average degree, and clustering coefficient [36] to mea-
sure the quality of the communities retrieved by our approach.
These measures mostly depend on the community models (e.g., k-
core, k-truss) as discussed in a survey of community search [36].
The survey prefers the k-core model because of its high efficiency
with minimal sacrifice in structural cohesiveness. By analyzing
the cohesiveness measures in Table 7, we claim that our algo-
rithms can retrieve cohesive communities with a small diameter.

6.4. A case study

We use a small dataset of a co-author network from Ar-
netMiner10 [45] to qualitatively study the effectiveness of our
approach. We also observe how our novel influential commu-
nity measure (Section 3.2) significantly contributes to enhancing
the quality of the retrieved communities. The dataset contains
5411 vertices and 17,477 edges. Each vertex represents an au-
thor annotated with fields from eight different research areas:
Data Mining (DM), Web Services (WS), Bayesian Networks (BN),
Web Mining (WM), Semantic Web (SW), Machine Learning (ML),
Database Systems (DS), and Information Retrieval (IR), where the

10 https://aminer.org/lab-datasets/soinf/

https://aminer.org/lab-datasets/soinf/

M.S. Islam, M.E. Ali, Y.-B. Kang et al. Information Systems 104 (2022) 101914

T
T

F
(
o
k
a
t
i
o
w
D
t
(
n
l
n
o
H
r
k
f

t
n
(
t

a
a
c
h
t
a

7

e

Fig. 11. Retrieved top communities for DS.

able 8
op communities by our approach in DS.
Vertex Id Author name h-index Citations

0 Hector Garcia-Molina 138 90,220
1 David Maier 65 36,687
2 David J. DeWitt 89 38,770
3 Philip A. Bernstein 80 37,823
4 Michael Stonebraker 72 26,153
5 Michael J. Franklin 34 7746
6 Serge Abiteboul 80 35,950
7 Jennifer Widom 101 63,641
8 Joseph M. Hellerstein 90 43,207
9 Alon Y. Halevy 103 47,228

10 Jim Gray 81 46,884
11 Gerhard Weikum 88 34,028
12 Jeffrey F. Naughton 76 22,963
13 Yannis E. Ioannidis 59 15,017
14 Laura M. Haas 49 12,834
15 Stefano Ceri 77 29,506
16 Michael J. Carey 59 16,451
17 Rakesh Agrawal 108 124,595
18 Umeshwar Dayal 62 26,527

influence score in each field depends on the number of publica-
tions in that field. There is an edge between two authors if they
publish at least two papers together.

Note that [7] also conducted a case study on this dataset.
ig. 11 shows the top community in DS retrieved by our approach
Fig. 11(a)) and by [7] (Fig. 11(b)). The top community returned by
ur approach is 8-core and thus we compare the result of [7] for
= 8. The details, i.e., h-index and the number of citations of each
uthor in our community are shown in Table 8. Among them,
he authors who are not included in [7]’s community are shown
n bold text. Due to the minimum score modeling, they missed
ut few top authors in this area including Rakesh Agrawal who
as awarded the most influential scholar in the research area of
atabase Systems (DS) in Aminer.11 Our approach keeps him in
he community as we did not exclude a relatively less influential
with good connectivity) author Laura M. Haas. When Laura is
ot included in the community, Rakesh Agarwal is connected to
ess than 8 authors in the community, which turns out to be a
on 8-core community. Since in the minimum weight modeling
f [7], the inclusion of a low influential member like Laura M.
aas significantly reduces the score of the entire community, the
esultant community no longer remains the top community for

= 8. These findings show the effectiveness of our problem
ormulation and score function modeling.

Fig. 12 presents two top communities for ‘‘BN OR DM’’ re-
urned by our algorithms. The topmost community is fully con-
ected and contains highly influential authors like Didier Dubois
h-index: 125, citations: 82,295), Henri Prade (h-index: 119, ci-
ations: 78,700). The second topmost community also contains

11 https://aminer.org/mostinfluentialscholar
14
Fig. 12. Top communities for BN OR DM.

ll the authors from the top-1 community, but the inclusion of
nother author Rudolf Kruse (h-index: 54, citations: 16,829) in-
reases the contribution of individual scores but decreases the co-
esiveness of the community resulting in a lower total score than
he first one. This shows the flexibility and trade-off capability
mong parameters while searching for the communities.

. Conclusion

In this paper, we have introduced the keyword-aware influ-
ntial community query (KICQ) that finds top-r most influential

communities from an attributed graph. KICQ enables users to find
communities of their interests captured as a set of query terms
joined by predicates (AND/OR). We have proposed an influence
measure for a community that considers both the cohesiveness
and influence of individuals in the community. To efficiently
answer the KICQ , we have developed a novel KIC-tree index
that holds the candidate communities with derived upper bound
scores. We propose a baseline solution followed by two efficient
algorithms based on the derived upper bounds and results from
already explored subgraphs. Our experimental results show that
our approach outperforms the state-of-the-art approach in both
efficiency (up to 4 times faster) and effectiveness (up to 15 times
higher keyword cohesiveness). Finally, we have validated our pro-
posed influence measure of a community using a case study with
a real dataset. One direction of future work can be a disk based
scalable algorithm for the most influential community search
problem that will get rid of huge memory requirement. Also, the
attributed graphs may change often, and efficiently maintaining
the indexes dynamically can be an interesting future work.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgment

The experiment was conducted on the OzSTAR national facility
at Swinburne University of Technology. The OzSTAR program re-
ceives funding in part from the Astronomy National Collaborative
Research Infrastructure Strategy (NCRIS) allocation provided by
the Australian Government.

References

[1] Mauro Sozio, Aristides Gionis, The community-search problem and how to
plan a successful cocktail party, in: SIGKDD, 2010, pp. 939–948.

[2] Laurent Kretz, Virtual online community with geographically targeted
advertising, April 17 2008. US Patent App. 11/580, 725.

[3] Jeff Naruchitparames, Mehmet Hadi Güneş, Sushil J Louis, Friend rec-
ommendations in social networks using genetic algorithms and network
topology, in: 2011 IEEE Congress of Evolutionary Computation, CEC, IEEE,
2011, pp. 2207–2214.

https://aminer.org/mostinfluentialscholar
http://refhub.elsevier.com/S0306-4379(21)00121-6/sb3
http://refhub.elsevier.com/S0306-4379(21)00121-6/sb3
http://refhub.elsevier.com/S0306-4379(21)00121-6/sb3
http://refhub.elsevier.com/S0306-4379(21)00121-6/sb3
http://refhub.elsevier.com/S0306-4379(21)00121-6/sb3
http://refhub.elsevier.com/S0306-4379(21)00121-6/sb3
http://refhub.elsevier.com/S0306-4379(21)00121-6/sb3

M.S. Islam, M.E. Ali, Y.-B. Kang et al. Information Systems 104 (2022) 101914
[4] Yixiang Fang, Reynolds Cheng, Siqiang Luo, Jiafeng Hu, Effective community
search for large attributed graphs, Proc. VLDB Endow. 9 (12) (2016)
1233–1244.

[5] Yixiang Fang, Reynolds Cheng, Xiaodong Li, Siqiang Luo, Jiafeng Hu,
Effective community search over large spatial graphs, Proc. VLDB Endow.
10 (6) (2017) 709–720.

[6] Xin Huang, Laks V.S. Lakshmanan, Attribute-driven community search,
Proc. VLDB Endow. 10 (9) (2017) 949–960.

[7] Rong-Hua Li, Lu Qin, Jeffrey Xu Yu, Rui Mao, Influential community search
in large networks, Proc. VLDB Endow. 8 (5) (2015) 509–520.

[8] Jianxin Li, Xinjue Wang, Ke Deng, Xiaochun Yang, Timos Sellis, Jeffrey Xu
Yu, Most influential community search over large social networks, in: ICDE,
2017, pp. 871–882.

[9] Zhiwei Zhang, Xin Huang, Jianliang Xu, Byron Choi, Zechao Shang,
Keyword-centric community search, in: ICDE, IEEE, 2019, pp. 422–433.

[10] Lu Chen, Chengfei Liu, Kewen Liao, Jianxin Li, Rui Zhou, Contextual
community search over large social networks, in: ICDE, IEEE, 2019, pp.
88–99.

[11] James Cheng, Yiping Ke, Ada Wai-Chee Fu, Jeffrey Xu Yu, Linhong Zhu,
Finding maximal cliques in massive networks, ACM Trans. Database Syst.
36 (4) (2011) 21.

[12] James Cheng, Yiping Ke, Shumo Chu, M. Tamer Özsu, Efficient core
decomposition in massive networks, in: ICDE, 2011, pp. 51–62.

[13] Jia Wang, James Cheng, Truss decomposition in massive networks, Proc.
VLDB Endow. 5 (9) (2012) 812–823.

[14] Santo Fortunato, Community detection in graphs, Phys. Rep. 486 (3) (2010)
75–174.

[15] Yang Zhou, Hong Cheng, Jeffrey Xu Yu, Graph clustering based on
structural/attribute similarities, Proc. VLDB Endow. 2 (1) (2009) 718–729.

[16] Yiye Ruan, David Fuhry, Srinivasan Parthasarathy, Efficient community
detection in large networks using content and links, in: WWW, 2013, pp.
1089–1098.

[17] Yawen Jiang, Caiyan Jia, Jian Yu, An efficient community detection method
based on rank centrality, Physica A 392 (9) (2013) 2182–2194.

[18] Zhiqiang Xu, Yiping Ke, Yi Wang, Hong Cheng, James Cheng, A model-
based approach to attributed graph clustering, in: SIGMOD, ACM, 2012,
pp. 505–516.

[19] Yan Liu, Alexandru Niculescu-Mizil, Wojciech Gryc, Topic-link LDA: Joint
models of topic and author community, in: ICML, 2009, pp. 665–672.

[20] Mrinmaya Sachan, Danish Contractor, Tanveer A Faruquie, L Venkata
Subramaniam, Using content and interactions for discovering communities
in social networks, in: WWW, ACM, 2012, pp. 331–340.

[21] Shu Chen, Ran Wei, Diana Popova, Alex Thomo, Efficient computation
of importance based communities in web-scale networks using a single
machine, in: CIKM, ACM, 2016, pp. 1553–1562.

[22] Fei Bi, Lijun Chang, Xuemin Lin, Wenjie Zhang, An optimal and progressive
approach to online search of top-k influential communities, Proc. VLDB
Endow. 11 (9) (2018) 1056–1068.

[23] Dong Zheng, Jianquan Liu, Rong-Hua Li, Cigdem Aslay, Yi-Cheng Chen, Xin
Huang, Querying intimate-core groups in weighted graphs, in: 2017 IEEE
11th International Conference on Semantic Computing, ICSC, IEEE, 2017,
pp. 156–163.

[24] Wanyun Cui, Yanghua Xiao, Haixun Wang, Wei Wang, Local search of
communities in large graphs, in: SIGMOD, 2014, pp. 991–1002.

[25] Xin Huang, Hong Cheng, Lu Qin, Wentao Tian, Jeffrey Xu Yu, Querying
k-truss community in large and dynamic graphs, in: SIGMOD, 2014, pp.
1311–1322.
15
[26] Nicola Barbieri, Francesco Bonchi, Edoardo Galimberti, Francesco Gullo,
Efficient and effective community search, Data Min. Knowl. Discov. 29 (5)
(2015) 1406–1433.

[27] De-Nian Yang, Yi-Ling Chen, Wang-Chien Lee, Ming-Syan Chen, On social-
temporal group query with acquaintance constraint, Proc. VLDB Endow. 4
(6) (2011) 397–408.

[28] Long Yuan, Lu Qin, Wenjie Zhang, Lijun Chang, Jianye Yang, Index-based
densest clique percolation community search in networks, IEEE Trans.
Knowl. Data Eng. 30 (5) (2017) 922–935.

[29] Rong-Hua Li, Jiao Su, Lu Qin, Jeffrey Xu Yu, Qiangqiang Dai, Persis-
tent community search in temporal networks, in: ICDE, IEEE, 2018, pp.
797–808.

[30] Sanket Chobe, Justin Zhan, Advancing community detection using keyword
attribute search, J. Big Data 6 (1) (2019) 83.

[31] Abeer Khan, Lukasz Golab, Mehdi Kargar, Jaroslaw Szlichta, Morteza
Zihayat, Compact group discovery in attributed graphs and social networks,
Inf. Process. Manage. (2019) 102054.

[32] Yankai Chen, Yixiang Fang, Reynolds Cheng, Yun Li, Xiaojun Chen, Jie
Zhang, Exploring communities in large profiled graphs, IEEE Trans. Knowl.
Data Eng. (2018).

[33] Kai Wang, Xin Cao, Xuemin Lin, Wenjie Zhang, Lu Qin, Efficient computing
of radius-bounded k-cores, in: ICDE, IEEE, 2018, pp. 233–244.

[34] Qijun Zhu, Haibo Hu, Cheng Xu, Jianliang Xu, Wang-Chien Lee, Geo-social
group queries with minimum acquaintance constraints, VLDB J. 26 (5)
(2017) 709–727.

[35] Rong-Hua Li, Lu Qin, Fanghua Ye, Jeffrey Xu Yu, Xiaokui Xiao, Nong Xiao,
Zibin Zheng, Skyline community search in multi-valued networks, in:
SIGMOD, ACM, 2018, pp. 457–472.

[36] Yixiang Fang, Xin Huang, Lu Qin, Ying Zhang, Wenjie Zhang, Reynolds
Cheng, Xuemin Lin, A survey of community search over big graphs, VLDB
J. (2019).

[37] Tomas Mikolov, Kai Chen, Greg Corrado, Jeffrey Dean, Efficient estimation
of word representations in vector space, 2013, arXiv preprint arXiv:1301.
3781.

[38] Jacob Perkins, Python 3 Text Processing with NLTK 3 Cookbook, Packt
Publishing Ltd, 2014.

[39] Lailil Muflikhah, Baharum Baharudin, Document clustering using concept
space and cosine similarity measurement, in: 2009 International Confer-
ence on Computer Technology and Development, vol. 1, IEEE, 2009, pp.
58–62.

[40] Vladimir Batagelj, Matjaz Zaversnik, An O (m) algorithm for cores
decomposition of networks, 2003, arXiv preprint cs/0310049.

[41] AI Explosion, Spacy-industrial-strength natural language processing in
Python, 2017, URL: https://spacy.io.

[42] Nuno Seco, Tony Veale, Jer Hayes, An intrinsic information content metric
for semantic similarity in WordNet, in: Ecai, vol. 16, 2004, p. 1089.

[43] Yining Wang, Liwei Wang, Yuanzhi Li, Di He, Tie-Yan Liu, A theoretical
analysis of NDCG type ranking measures, in: Conference on Learning
Theory, 2013, pp. 25–54.

[44] David L. Davies, Donald W. Bouldin, A cluster separation measure, IEEE
Trans. Pattern Anal. Mach. Intell. (2) (1979) 224–227.

[45] Jie Tang, Jing Zhang, Limin Yao, Juanzi Li, Li Zhang, Zhong Su, Arnetminer:
Extraction and mining of academic social networks, in: SIGKDD, 2008, pp.
990–998.

http://refhub.elsevier.com/S0306-4379(21)00121-6/sb4
http://refhub.elsevier.com/S0306-4379(21)00121-6/sb4
http://refhub.elsevier.com/S0306-4379(21)00121-6/sb4
http://refhub.elsevier.com/S0306-4379(21)00121-6/sb4
http://refhub.elsevier.com/S0306-4379(21)00121-6/sb4
http://refhub.elsevier.com/S0306-4379(21)00121-6/sb5
http://refhub.elsevier.com/S0306-4379(21)00121-6/sb5
http://refhub.elsevier.com/S0306-4379(21)00121-6/sb5
http://refhub.elsevier.com/S0306-4379(21)00121-6/sb5
http://refhub.elsevier.com/S0306-4379(21)00121-6/sb5
http://refhub.elsevier.com/S0306-4379(21)00121-6/sb6
http://refhub.elsevier.com/S0306-4379(21)00121-6/sb6
http://refhub.elsevier.com/S0306-4379(21)00121-6/sb6
http://refhub.elsevier.com/S0306-4379(21)00121-6/sb7
http://refhub.elsevier.com/S0306-4379(21)00121-6/sb7
http://refhub.elsevier.com/S0306-4379(21)00121-6/sb7
http://refhub.elsevier.com/S0306-4379(21)00121-6/sb9
http://refhub.elsevier.com/S0306-4379(21)00121-6/sb9
http://refhub.elsevier.com/S0306-4379(21)00121-6/sb9
http://refhub.elsevier.com/S0306-4379(21)00121-6/sb10
http://refhub.elsevier.com/S0306-4379(21)00121-6/sb10
http://refhub.elsevier.com/S0306-4379(21)00121-6/sb10
http://refhub.elsevier.com/S0306-4379(21)00121-6/sb10
http://refhub.elsevier.com/S0306-4379(21)00121-6/sb10
http://refhub.elsevier.com/S0306-4379(21)00121-6/sb11
http://refhub.elsevier.com/S0306-4379(21)00121-6/sb11
http://refhub.elsevier.com/S0306-4379(21)00121-6/sb11
http://refhub.elsevier.com/S0306-4379(21)00121-6/sb11
http://refhub.elsevier.com/S0306-4379(21)00121-6/sb11
http://refhub.elsevier.com/S0306-4379(21)00121-6/sb13
http://refhub.elsevier.com/S0306-4379(21)00121-6/sb13
http://refhub.elsevier.com/S0306-4379(21)00121-6/sb13
http://refhub.elsevier.com/S0306-4379(21)00121-6/sb14
http://refhub.elsevier.com/S0306-4379(21)00121-6/sb14
http://refhub.elsevier.com/S0306-4379(21)00121-6/sb14
http://refhub.elsevier.com/S0306-4379(21)00121-6/sb15
http://refhub.elsevier.com/S0306-4379(21)00121-6/sb15
http://refhub.elsevier.com/S0306-4379(21)00121-6/sb15
http://refhub.elsevier.com/S0306-4379(21)00121-6/sb17
http://refhub.elsevier.com/S0306-4379(21)00121-6/sb17
http://refhub.elsevier.com/S0306-4379(21)00121-6/sb17
http://refhub.elsevier.com/S0306-4379(21)00121-6/sb18
http://refhub.elsevier.com/S0306-4379(21)00121-6/sb18
http://refhub.elsevier.com/S0306-4379(21)00121-6/sb18
http://refhub.elsevier.com/S0306-4379(21)00121-6/sb18
http://refhub.elsevier.com/S0306-4379(21)00121-6/sb18
http://refhub.elsevier.com/S0306-4379(21)00121-6/sb20
http://refhub.elsevier.com/S0306-4379(21)00121-6/sb20
http://refhub.elsevier.com/S0306-4379(21)00121-6/sb20
http://refhub.elsevier.com/S0306-4379(21)00121-6/sb20
http://refhub.elsevier.com/S0306-4379(21)00121-6/sb20
http://refhub.elsevier.com/S0306-4379(21)00121-6/sb21
http://refhub.elsevier.com/S0306-4379(21)00121-6/sb21
http://refhub.elsevier.com/S0306-4379(21)00121-6/sb21
http://refhub.elsevier.com/S0306-4379(21)00121-6/sb21
http://refhub.elsevier.com/S0306-4379(21)00121-6/sb21
http://refhub.elsevier.com/S0306-4379(21)00121-6/sb22
http://refhub.elsevier.com/S0306-4379(21)00121-6/sb22
http://refhub.elsevier.com/S0306-4379(21)00121-6/sb22
http://refhub.elsevier.com/S0306-4379(21)00121-6/sb22
http://refhub.elsevier.com/S0306-4379(21)00121-6/sb22
http://refhub.elsevier.com/S0306-4379(21)00121-6/sb23
http://refhub.elsevier.com/S0306-4379(21)00121-6/sb23
http://refhub.elsevier.com/S0306-4379(21)00121-6/sb23
http://refhub.elsevier.com/S0306-4379(21)00121-6/sb23
http://refhub.elsevier.com/S0306-4379(21)00121-6/sb23
http://refhub.elsevier.com/S0306-4379(21)00121-6/sb23
http://refhub.elsevier.com/S0306-4379(21)00121-6/sb23
http://refhub.elsevier.com/S0306-4379(21)00121-6/sb26
http://refhub.elsevier.com/S0306-4379(21)00121-6/sb26
http://refhub.elsevier.com/S0306-4379(21)00121-6/sb26
http://refhub.elsevier.com/S0306-4379(21)00121-6/sb26
http://refhub.elsevier.com/S0306-4379(21)00121-6/sb26
http://refhub.elsevier.com/S0306-4379(21)00121-6/sb27
http://refhub.elsevier.com/S0306-4379(21)00121-6/sb27
http://refhub.elsevier.com/S0306-4379(21)00121-6/sb27
http://refhub.elsevier.com/S0306-4379(21)00121-6/sb27
http://refhub.elsevier.com/S0306-4379(21)00121-6/sb27
http://refhub.elsevier.com/S0306-4379(21)00121-6/sb28
http://refhub.elsevier.com/S0306-4379(21)00121-6/sb28
http://refhub.elsevier.com/S0306-4379(21)00121-6/sb28
http://refhub.elsevier.com/S0306-4379(21)00121-6/sb28
http://refhub.elsevier.com/S0306-4379(21)00121-6/sb28
http://refhub.elsevier.com/S0306-4379(21)00121-6/sb29
http://refhub.elsevier.com/S0306-4379(21)00121-6/sb29
http://refhub.elsevier.com/S0306-4379(21)00121-6/sb29
http://refhub.elsevier.com/S0306-4379(21)00121-6/sb29
http://refhub.elsevier.com/S0306-4379(21)00121-6/sb29
http://refhub.elsevier.com/S0306-4379(21)00121-6/sb30
http://refhub.elsevier.com/S0306-4379(21)00121-6/sb30
http://refhub.elsevier.com/S0306-4379(21)00121-6/sb30
http://refhub.elsevier.com/S0306-4379(21)00121-6/sb31
http://refhub.elsevier.com/S0306-4379(21)00121-6/sb31
http://refhub.elsevier.com/S0306-4379(21)00121-6/sb31
http://refhub.elsevier.com/S0306-4379(21)00121-6/sb31
http://refhub.elsevier.com/S0306-4379(21)00121-6/sb31
http://refhub.elsevier.com/S0306-4379(21)00121-6/sb32
http://refhub.elsevier.com/S0306-4379(21)00121-6/sb32
http://refhub.elsevier.com/S0306-4379(21)00121-6/sb32
http://refhub.elsevier.com/S0306-4379(21)00121-6/sb32
http://refhub.elsevier.com/S0306-4379(21)00121-6/sb32
http://refhub.elsevier.com/S0306-4379(21)00121-6/sb33
http://refhub.elsevier.com/S0306-4379(21)00121-6/sb33
http://refhub.elsevier.com/S0306-4379(21)00121-6/sb33
http://refhub.elsevier.com/S0306-4379(21)00121-6/sb34
http://refhub.elsevier.com/S0306-4379(21)00121-6/sb34
http://refhub.elsevier.com/S0306-4379(21)00121-6/sb34
http://refhub.elsevier.com/S0306-4379(21)00121-6/sb34
http://refhub.elsevier.com/S0306-4379(21)00121-6/sb34
http://refhub.elsevier.com/S0306-4379(21)00121-6/sb35
http://refhub.elsevier.com/S0306-4379(21)00121-6/sb35
http://refhub.elsevier.com/S0306-4379(21)00121-6/sb35
http://refhub.elsevier.com/S0306-4379(21)00121-6/sb35
http://refhub.elsevier.com/S0306-4379(21)00121-6/sb35
http://refhub.elsevier.com/S0306-4379(21)00121-6/sb36
http://refhub.elsevier.com/S0306-4379(21)00121-6/sb36
http://refhub.elsevier.com/S0306-4379(21)00121-6/sb36
http://refhub.elsevier.com/S0306-4379(21)00121-6/sb36
http://refhub.elsevier.com/S0306-4379(21)00121-6/sb36
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1301.3781
http://refhub.elsevier.com/S0306-4379(21)00121-6/sb38
http://refhub.elsevier.com/S0306-4379(21)00121-6/sb38
http://refhub.elsevier.com/S0306-4379(21)00121-6/sb38
http://refhub.elsevier.com/S0306-4379(21)00121-6/sb39
http://refhub.elsevier.com/S0306-4379(21)00121-6/sb39
http://refhub.elsevier.com/S0306-4379(21)00121-6/sb39
http://refhub.elsevier.com/S0306-4379(21)00121-6/sb39
http://refhub.elsevier.com/S0306-4379(21)00121-6/sb39
http://refhub.elsevier.com/S0306-4379(21)00121-6/sb39
http://refhub.elsevier.com/S0306-4379(21)00121-6/sb39
http://refhub.elsevier.com/S0306-4379(21)00121-6/sb40
http://refhub.elsevier.com/S0306-4379(21)00121-6/sb40
http://refhub.elsevier.com/S0306-4379(21)00121-6/sb40
https://spacy.io
http://refhub.elsevier.com/S0306-4379(21)00121-6/sb42
http://refhub.elsevier.com/S0306-4379(21)00121-6/sb42
http://refhub.elsevier.com/S0306-4379(21)00121-6/sb42
http://refhub.elsevier.com/S0306-4379(21)00121-6/sb44
http://refhub.elsevier.com/S0306-4379(21)00121-6/sb44
http://refhub.elsevier.com/S0306-4379(21)00121-6/sb44

	Keyword aware influential community search in large attributed graphs
	Introduction
	Related works
	Problem definition and system overview
	Keyword-aware influential community
	Influential community measures
	Parameters
	System overview

	Keyword augmentation
	Semantic keyword similarity model
	Augmenting keywords for KICQ in attributed graph

	Algorithms
	A straightforward approach, BASIC-EXPLORE
	Pruned exploration approach, PRUNED-EXPLORE
	Keyword indexed tree exploration, TREE-EXPLORE
	KIC-tree index
	Complexity analysis for index construction:
	Computing upper bound scores for a query
	TREE-EXPLORE algorithm

	Experiments
	Experimental setup
	Evaluation of semantic similarity model
	Experimental evaluation
	Comparison with state-of-the-art
	Selecting for various datasets
	Effects of query parameters
	Scalability of KICQ
	Performance for AND predicate
	Performance in various datasets

	A case study

	Conclusion
	Declaration of competing interest
	Acknowledgment
	References

