
Data Mining and Knowledge Discovery
https://doi.org/10.1007/s10618-021-00789-x

Boosting house price predictions using geo-spatial network
embedding

Sarkar Snigdha Sarathi Das1,2 ·Mohammed Eunus Ali2 · Yuan-Fang Li3 ·
Yong-Bin Kang4 · Timos Sellis4,5

Received: 26 August 2020 / Accepted: 5 August 2021
© The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2021

Abstract
Real estate contributes significantly to all major economies around the world. In par-
ticular, house prices have a direct impact on stakeholders, ranging from house buyers
to financing companies. Thus, a plethora of techniques have been developed for real
estate price prediction. Most of the existing techniques rely on different house features
to build a variety of prediction models to predict house prices. Perceiving the effect of
spatial dependence on house prices, some later works focused on introducing spatial
regression models for improving prediction performance. However, they fail to take
into account the geo-spatial context of the neighborhood amenities such as how close
a house is to a train station, or a highly-ranked school, or a shopping center. Such
contextual information may play a vital role in users’ interests in a house and thereby
has a direct influence on its price. In this paper, we propose to leverage the concept
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of graph neural networks to capture the geo-spatial context of the neighborhood of a
house. In particular, we present a novel method, the geo-spatial network embedding
(GSNE), that learns the embeddings of houses and various types of points of interest
(POIs) in the form of multipartite networks, where the houses and the POIs are rep-
resented as attributed nodes and the relationships between them as edges. Extensive
experiments with a large number of regression techniques show that the embeddings
produced by our proposed GSNE technique consistently and significantly improve the
performance of the house price prediction task regardless of the downstream regression
model. Relevant source code for GSNE is available at: https://github.com/sarathismg/
gsne.

Keywords Geo-spatial network embedding · Graph neural networks · Real estate
queries · House-price predictions

1 Introduction

The price of a house is one of the most critical factors in the decision-making process
of buying a house. Determining which house to buy is a challenging task as it is
influenced by a multitude of other factors: features of houses as well as the complex
geo-spatial relationships with their neighborhoods.

Precise prediction of house prices is of paramount importance to prospective buy-
ers and homeowners who are planning to purchase or sell their houses. An effective
prediction system can greatly assist the buyers to plan their funds ahead of purchase.
Besides, property investors can leverage these prediction systems to plan their schemes
for increasing revenue.Most importantly, a house price prediction systemplaces home-
owners and customers in a level playing field with investors, developers, real estate
companies, mortgages, and insurance companies by providing them with reasonable
price estimates. Zillow’s Zestimate1 is a prominent example of such a prediction
scheme that has helped even first time customers to get a clear picture of the U.S.
housing market over the years. Thus, the task of house price prediction has received
significant attention in both academia and stakeholders for decades. Over the years,
researchers have used different techniques to build effective models for house price
predictions. For example, typical Hedonic Price models (Owusu-Ansah 2013; Rosen
1974) have been extensively studied to model the relationship between prices and
housing features. While the early models based on ordinary least square (OLS) con-
text did not include spatial awareness, researchers gradually realized the impact of
regional submarkets in house price prediction. To incorporate the locational influence,
several works (Bourassa et al. 2003; Fik et al. 2003; Dubin 1998; Bourassa et al. 2007)
used spatial statistical methods since simple hedonic models are not much effective in
handling spatial dependence in regression residuals. However, these spatial statistical
methods require explicit feature engineering by domain experts. Following the suc-
cess of machine learning in different fields, in recent years, SVM (Wang et al. 2014),
convolutional neural networks (Piao et al. 2019), and recurrent neural networks (Chen

1 https://www.zillow.com/how-much-is-my-home-worth/.
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et al. 2017) have been employed to better capture the preferences for more accu-
rate house price prediction. House images have also been leveraged for better price
estimation (Zhao et al. 2019). Unlike OLS based hedonic models, these modern learn-
ing algorithms can effectively capture the spatial dependence from location attributes
which obviates the need of explicit feature engineering.

Although most of the recent prior works leverage the detailed housing and location
features, they overlook the geo-spatial contexts such as “howclose is this house to the
train station?”, or “is there any good school in walking distance from the house?”.
These geo-spatial contexts based on neighbourhood facilities can greatly influence
user preferences on buying a house and hence can be key determining factors for the
price of the house. To illustrate, suppose that there are two houses with the same set
of features such as the number of bedrooms, house areas, etc., in the same suburb.
However, there may have variations in their prices. For example, a house next to the
train station will likely have a much higher price than the house which is far away
(e.g. 3km distance) from the train station. Similarly, houses in a certain suburb with
good schools in the neighborhood and a train station for commuting to the city will
have higher prices than those houses in a nearby suburb that does not have a good
school and a train station in its neighborhood. Hence, points of interests (POIs) such
as train stations, schools, shopping centers, etc. in the neighborhood can play key roles
in determining the house prices. To the best of our knowledge, none of the prior works
capture the important features related to neighborhood POIs and their relationship
with houses.

It is not straightforward to capture complex latent interactions between houses and
POIs as it involves connectivity among different entities (e.g. how close a house is to
the train station) as well as heterogeneous sets of features of these entities (e.g. how
good a school is). Recently, an approach by Jenkins et al. (2019) used satellite image,
taxi mobility data, and the existence of different categories of point of interests for
generating an embedding for a region, which are later used to a get a coarse outline of
price distribution per sqft for houses in that region. Though this work can capture the
regional features using complex sets of data, they neither consider detailed houses and
POIs features nor the relationships between neighborhood POIs and the corresponding
house, which is our main focus in this paper.

In this paper, we propose geo-spatial network embedding (GSNE) that accurately
captures highly useful spatial features (both connectivity and the content) of key neigh-
borhoodPOIs such as schools, train stations, etc. and their relationswith the houses.We
leverage the key concept of graph embedding that essentially learns low dimensional
feature representations of a given attributed graph. GSNE employs Gaussian-based
embedding methods (Bojchevski and Günnemann 2017; Hettige et al. 2020; Zhu et al.
2018) as they have been shown to be effective and robust against noises and uncertain-
ties that are inherent in many real-world graphs such as house-neighborhood networks
in real estate.

Wepropose to represent houses and their neighborhoodPOIs as amultipartite graph,
in which nodes of different partitions (types) represent houses and POIs (e.g. regions
and schools), and edges represent the spatial proximity relation between nodes. In our
case, the graph is attributed and weighted, where nodes are attributed with their own
features and edge weights represent the distance between two nodes. The key intuition
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of our proposed approach, GSNE, is to project the nodes in a spatial network into a
Gaussian feature space.

Prior works in Gaussian-based network embeddings (Bojchevski and Günnemann
2017; Hettige et al. 2020; Zhu et al. 2018) only consider homogeneous or bipartite
network, and it is not straightforward to embed heterogeneous multipartite networks
in the same Gaussian space. The heterogeneity poses several challenges that include
projecting different categories of node features into the same Gaussian space and
developing effective sampling strategies and training schemes. We address all of these
challenges in our proposed GSNE framework.

We evaluate our GSNE framework on the house price prediction task on a large real-
estate andPOI datasets ofMelbourne,Australia.We concatenate the learned embedded
vectors fromGSNE,which capture essential spatial information about houses and their
neighborhood context, with the raw house features vectors as features to predict house
prices. Compared with raw features only, the concatenated features achieve the best
prediction performance on a large number of regression models, demonstrating the
effectiveness and robustness of our GSNE model.

In summary, our contributions are as follows:

– We propose a novel geo-spatial network embedding (GSNE) framework that can
accurately capture the geo-spatial neighborhood context in terms of different types
of POI and their features, and the relationships among these POIs in a weighted,
attributed multipartite graph.

– We adopt and extend theGaussian embeddingmethods to realize ourGSNE frame-
work, which is highly efficient and can work with heterogeneous types of nodes
and features.

– Our comprehensive evaluation on a large real-estate dataset shows that for the
house prediction task, combining geo-spatial embedded vectors learned by GSNE
with the housing features results in consistently better prediction performance than
raw feature only, regardless of the downstream regression model.

2 Related work

In this section, we primarily discuss the existing works on house price predictions.
Based on the working methodologies, we divide these works three categories: hous-
ing feature centric traditional approaches, machine learning based approaches, and
location centric approaches, which are presented in Sect. 2.1. Later we discuss major
existing works on networking embedding in Sect. 2.2

2.1 House price predictions

Housing feature-centric traditional approaches Most of the earlier price prediction
models were based on Hedonic regression (Rosen 1974). Later this model has been
extensively studied predicting prices of different areas and analyzing the effects of dif-
ferent factors (Trojanek 2013; Yayar and Demir 2014; Król 2015; Ottensmann et al.
2008). In Hedonic price model, houses are considered as aggregation of different
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attributes, where customers purchase this package of bundled attributes. Although it
simplifies the prediction task, there are some notable shortcomings. It has been found
that hedonic price coefficients of some attributes are not stable between locations,
property types and age (Fletcher et al. 2000). Furthermore, issues like model speci-
fication procedures, independent variable interactions, non-linearity and outlier data
points inhibit price prediction performance in hedonic price models (Limsombunchai
2004). Genetic algorithms have also been used in the study of house price prediction
problem. In Thomas Ng et al. (2008), the authors used a hybrid of genetic algorithm
and SVM to predict house prices from different sets of features. In another work,Man-
ganelli et al. (2015) studied the potential of genetic algorithm in this problem domain.
They also study the effect of geographical location from the viewpoint of genetic algo-
rithm. In a recent work Morano et al. (2018) used evolutionary polynomial regression
to model house price prediction.

Machine learning (ML) approaches Following the success of ML models in dif-
ferent prediction tasks, researchers started to employ different machine learning
techniques for estimating housing prices. Wang et al. (2008) and Li et al. (2009) used
SVM based regression for determinig the house price. Xin and Khalid (2018) used
Lasso and ridge regression for predicting house prices. In Limsombunchai (2004), the
authors found that artificial neural network (ANN) based model outperforms hedonic
price models in out of sample predictions. Later, in another study (Ravikumar 2017),
the authors experimented with a wide varieties of ML techniques that include artificial
neural networks (ANN), AdaBoost, random forest, gradient boosted trees, multi layer
perceptron, and ensemble learning algorithms. They found that gradient boosted trees
yield the best performance in predicting house prices. Researchers also used modern
deep learning based approaches to improve house price prediction performance. In
Piao et al. (2019), the authors used convolutional neural network (CNN) for feature
selection as well as price prediction. Feng and Jones (2015) compared multi level
modeling (MLM) approaches with ANN and found the MLM methods to be much
superior compared to ANN. In another recent work (Zhao et al. 2019), the authors
utilized property images alongside original tabular features, where they used CNN to
extract features from those images and combined them with the transformed tabular
features. They achieved an improved performance in price prediction by channeling
this new set of features through XGBoost algorithm.

Location-centric approaches As researchers realized the impact of locations on
house prices, several works focused on the spatial awareness of the prediction models
in order to amplify the location effect. Standard Hedonic regression models assume
the residuals to be independent of each other, yet it is found that those residuals
show significant spatial dependency (Kelley Pace and Gilley 1998). Over the years,
several techniques have been proposed to introduce spatial awareness in the predic-
tion models. In Bourassa et al. (2003), the authors experimented with a set of spatial
submarkets defined by real estate appraisers. They compared different approaches of
including neighbouring properties’ residuals, separate submarket equations, etc. to
take spatial dependence into account. On the other hand, Fletcher et al. (2000) found
that prediction from a model with postcode dummies perform slightly better than sep-
arate equations for each postcode. Geo-statical approaches have also been taken in
some works (Dubin 1998; Basu and Thibodeau 1998), where it was found to do well
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compared to ordinary least square (OLS) regression models. Bourassa et al. (2010)
found that geo-statistical model with dis-aggregated submarket variables performed
the best in predicting price while considering spatial dependency. On the other hand,
Thibodeau (2003) found that in neighbourhood level geo-statical models perform
only slightly better compared to OLS model. Besides geo-statical approaches, lattice
approaches have also been tried out. In Bourassa et al. (2007), the authors found that
in mass appraisal context, lattice models which include SAR (simultaneous autore-
gressive) and CAR (conditional autoregressive) models performed poorly compared
to even simple OLS models which disregard spatial dependence. They concluded that
including submarket variable in OLS context gives much better gain in accuracy com-
pared to any other geo-statical or lattice methods. They also argued that it is much
more practical given that hedonic models with submarket dummies are much easier
to implement compared to geo-statical or lattice approaches while also giving better
gains. InCase et al. (2004), the authors experimentedwithOLSwith location variables,
geo-statical and several spatial statistics methods. They found that when accounted
for the neighbouring residuals, all of those models showed similar results. Fik et al.
(2003) on the other hand, showed that property characteristics as well as cartesian
coordinates and submarket dummies were able to capture most of spatial dependence
and gives significant improvement in prediction accuracy. Similar models have also
been used in other research domains to reveal spatial relations. Cavalcante et al. (2017)
investigated different sparse structures for vector autoregressive model with LASSO
framework for wind power forecasting. On the other hand, Ceci et al. (2019) proposed
learning artificial neural network with respect to entropy based criteria for resolving
temporal and spatial autocorrelation in forecasting renewable energy. Again, Gauvin
et al. (2014) proposed using Tucker tensor decomposition for detecting community
structure in temporal network. Corizzo et al. (2020) also leveraged similar technique
to extract spatio-temporal autocorrelation in renewable energy forecasting.

In another work, Montero et al. (2018) considered parametric and semi-parametric
spatial hedonic model variants to capture spatial auto-correlation. Sikder and Züfle
(2020) recently proposed to use singular value decomposition and kriged its residual
to better capture the spatial correlation. On the other hand, an unpublished technical
report by Gao et al. (2019) partitioned their dataset for different task definitions based
on different schemes such as distance to station, schools, etc and usedmulti-task learn-
ing approach for the partitioned dataset.Amajor limitation of these approaches is that it
requires in-depth domain analysis for choosing the submarket definition/partitioning
scheme as effective partitioning scheme vary widely from dataset to dataset. Fur-
thermore, to induce spatial lag in price prediction, traditional spatial statistics (e.g.
Geostatical, SAR, CAR) approaches relied on heavy amount of feature engineering,
which is required to be done by real estate appraisers.

Recently, Jenkins et al. (2019) used multimodal data such as Satellite images,
taxi mobility data, and categories of point of interests for generating embedding for
different grid-partitioned region, which are later used to find overall price per sqft
for houses in that region. This approach only provided an overview of the region and
considers price per sqft. of houses, which is a coarse outline of price distribution. None
of these methods could capture the intrinsic relationships between neighborhood POIs
and the corresponding house, which is our key contribution of this paper.
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2.2 Network embedding

To represent complex high dimensional network information in a low dimensional
feature space, several techniques have been adopted in recent times (Cai et al. 2018).
Earlier works used randomwalk basedmethods to encode these structural information.
Perozzi et al. (2014) first proposed short randomwalks and apply neural languagemod-
eling techniques for node representation. Later (Grover and Leskovec 2016) proposed
to improve (Perozzi et al. 2014) by biased random walking for effective exploration
of neighborhood. Kipf et al. (2016a) used spectral graph convolution for learning
network representation. Later the authors used this graph convolution as encoder for
a variational autoencoder (Kipf and Welling 2016b). To further improve the perfor-
mance, Veličković et al. (2017) exploited masked self-attentional layers. On the other
hand, Tang et al. (2015) proposed a different approach where proximity objectives
were leveraged for embedding both global and local network structures. In some
recent works (Bojchevski and Günnemann 2017; Zhu et al. 2018; Hettige et al. 2020),
Gaussian embedding has been exploited to handle the uncertainties in network embed-
ding. However, these Gaussian embedding methods only works with homogeneous or
bipartite networks.

In this paper, we propose GSNE to incorporate network embedding in geo-spatial
network. We extend the notion of network embedding to handle a wide variety of
POIs having completely different sets of features. Also, by mapping the POI nodes
in a high dimensional global embedding space, GSNE generates POI representations
that also incorporate the features of neighborhood POIs. GSNE preserves both local
and global structures, while dealing with the high degree of uncertainties in these
networks originating from irregular structures. These properties of GSNE make it
useful for inducing spatial awareness in the representation of POIs.

3 Methodology

In this section, we present our proposed geo-spatial network embedding (GSNE)
approach. Since GSNE utilizes the notion of network embedding, given the housing
data, GSNE converts the house and POI data into a geo-spatial network that is repre-
sented as an attributed, multipartite network. This attributed, multipartite network is
then channeled through a neural network embedding pipeline, which embeds the nodes
of the network in a Gaussian feature space, as inspired by previous work (Bojchevski
andGünnemann 2017;Hettige et al. 2020; Zhu et al. 2018). The high-level architecture
ofGSNE is depicted in Fig. 1, whichwill be discussed in subsequent sections. Next, we
discuss the problem formulation of geo-spatial network embedding (Sect. 3.1). Then
we present the details of heterogeneous node attribute encoding (Sect. 3.2). After
that we present the structure embedding learning through both first- and second-order
proximity (Sect. 3.3). We discuss our model optimization (Sect. 3.4), which will be
followed by model training details for GSNE (Sect. 3.5).
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Fig. 1 a An example showing
the location of a house (red
location pin) and its nearby
school (yellow pin), shop
(purple pin), and bus-station
(green pin) on the map. b
Geo-spatial network centred
around the house in a where
w1, w2, w3 represents the
weights of the corresponding
undirected edges. c Illustration
of the multipartite nature of the
network, where each node
partition represents either houses
or a specific category of POI
nodes i.e. schools, shops, or
bus stations, d The overall
architecture of GSNE, where
the node attribute encoding is
represented using
{ f1, f2, f3, f4},
{u1, u2, u3, u4}, and { fμ, fΣ },
and the second-order context
encoding is represented as
{ f ′

1, f ′
2, f ′

3, f ′
4},

{u′
1, u

′
2, u

′
3, u

′
4}, and { f ′

μ, f ′
Σ }.

Here the house and bus station
nodes in a are bolded to
represent sampled house-bus
station edge and how it is
channeled through the GSNE
framework

123



Boosting house price predictions...

3.1 Problem definition

Let G = {V,X , E,W } represent our attributed, weighted, multipartite geo-spatial
network, where, V , X , E , and W represent nodes (vertices), node attribute matrices,
edges, and edge weights, respectively. The set of nodes V comprises K mutually
exclusive subsets of nodes, i.e., V = V1 ∪ V2 ∪ . . . ∪ VK , where each subset Vk
denotes a partition of nodes of a single type of POI (e.g. school or train Station), and
Vk1∩Vk2 = ∅where k1, k2 ∈ {1, 2, . . . , K } and k1 �= k2. The set of attributematrices is
represented as X = {X1, X2, . . . , XK }, such that each Xk ∈ R

Dk×|Vk | represents the
attribute matrix for node partition Vk , where Dk is the dimension of the attributes and
|Vk | represents the number of nodes in this partition. Since these attributes can vary
greatly from POI to POI (e.g. for schools, number of students, rankings etc. while
for train stations, train frequency, time to reach other stations etc.), the dimension
of the Xk will be different for each of the POIs. Again, E = ⋃

k1,k2 Ek1k2 , where
k1, k2 ∈ {1, 2, . . . , K }, k1 �= k2 and each Ek1k2 represents the set of edges between
the nodes in partition Vk1 and nodes in partition Vk2 . Also,W ∈ R

|E | is a weight vector
such that each edge ei j ∈ E between a pair of nodes i and j has a weight wi j ∈ W .
Note that without the loss of generality we use the terms ‘attributes’ and ‘features’
interchangeably. Widely used notations in the paper are listed in Table 1.

We exploit the spatial information (latitude, longitude) of houses and POIs to gen-
erate the set of edges E . Intuitively, an edge is created between a pair of nodes only if
they are located less than a certain user-specified distance threshold δmax .

For each edge ei j ∈ E , its weight wi j is calculated as wi j = 1
δ(i, j) , where δ(i, j)

represents the euclidean distance between the two nodes. Moreover, we design our
network to be undirected, thus ei j = e ji and wi j = w j i .

For our geo-spatial network, the partition V1 denotes houses, and the other partitions
V2, . . . , VK denote different types of POIs such as regions, schools and train stations.
Figure 1a, b, c show an example of geo-spatial entities, geo-spatial network, and the
multipartite representation of the network, respectively.

The GSNE model learns low-dimensional Gaussian embeddings hi for each node
vi ∈ V , i.e. hi = N (μi ,Σ i ), whereμi ∈ R

L ,Σ i ∈ R
L×L , where L is the embedding

dimension and L � |V| and L � Dk for each k ∈ 1, . . . , K . Intuitively, nodes that
are similar to each other and are close in the original multipartite network are also
close in the embedding space.

3.2 Heterogeneous node attribute encoding

We employ neural network based encoders to learn the embeddings of node features
of the K partitions

in the network G. A straightforward approach for encoding node features in a
multipartite network is to concatenate feature vectors of different partitions with zero
padding to create a global feature vector, which is then fed into a single encoder to
produce the initial node embeddings. This approach has been shown to work well for
bipartite networks (where K = 2) in prior work (Hettige et al. 2020). However, this
strategy may face issues in a complex multipartite network like ours, as the dimension
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of the combined feature vector becomes exceedingly large and sparse that it induces
suboptimal model convergence as found in our experiments.

To tackle this challenge, GSNE uses separate encoders to handle different partitions
of nodes, which is followed by a global Gaussian encoder that projects distinct types
of POI nodes in the same Gaussian embedding space. By doing so, we solve the
sparsity issue while projecting the final embedding into the same Gaussian embedding
space. Specifically, we employ K different encoders { fk ∈ Xk → R

l×|Vk |}k∈{1,2,...,K },
where each encoder fk projects attributes Xk of nodes in partition Vk to l-dimensional
embedding space Rl×|Vk |.

Each encoder fk generates encoded representations ui for a feature vector xi ∈ Xk

using rectified linear units (ReLU) as follows:

ui = fk(xi ) = ReLU (W k2 zi + bk2), where

zi = ReLU (W k1xi + bk1), (1)

where W k = {W k1 ,W k2} are the weight matrices and bk = {bk1 , bk2} are the bias
vectors for partition Vk ∈ V . Here, W k1 ∈ R

l ′×Dk , W k2 ∈ R
l×l ′ , bk1 ∈ R

l ′ , and
bk2 ∈ R

l . Here, l ′ and l denote the first and second (ouput) layer dimensions of
heterogeneous node attribute encoder respectively.

The attribute embeddings ui are then channeled through a Gaussian encoder to
obtain the final Gaussian embedding N (μi ,Σ i ). Although we use separate encoders
for each node type to handle different partitions, we employ a common global Gaus-
sian encoder ( fμ, fΣ) for learning the final representations of all nodes. As a result,
the common Gaussian encoder allows us project all nodes in the same L-dimensional
Gaussian space. Since we are projecting nodes of different partitions in the same
Gaussian space, we are essentially allowing the nodes to know their own neighbour-
hood while learning from the global network structure. Here we generate Gaussian
embedding hi = (μi ,Σ i ) from the intermediate representations as follows:

μi = fμ(ui ) = ReLU (Wμui + bμ) (2)

Σ i = fΣ(ui ) = ELU (WΣui + bΣ) + 1 (3)

where Wμ,WΣ ∈ R
L×l and bμ, bΣ ∈ R

L , and the exponential linear unit
(ELU) (Clevert et al. 2015) is the activation function in the covariance encoder.

3.3 Network structure embedding

GSNE learns from the structure of the multipartite network by considering both first-
order and second-order proximity between each pair of connected partitions.

First-order proximity learns from the direct connections of a pair of nodes across
partitions, while second-order proximity learns from nodes that are connected through
an intermediate node. The aim of this learning is to capture local neighbourhood con-
text as well as global connectivity in the whole network. In the following subsections
we describe how such structural information is captured in GSNE.
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3.3.1 First-order proximity in geospatial network

As indicated in previous work (Tang et al. 2015; Wang et al. 2016), the first-order
proximity represents the local pairwise proximity between two nodes. In other words,
if an edge connects a pair of nodes (i, j), they have a positive first-order proximity.
While in any network it is intuitive to generate similar embeddings for two nodes with
positive first-order proximity, in the geospatial domain it has additional significance.
Consider the following scenario. If a house i has an edge with a nearby school j , the
first-order proximity essentially tries to generate similar embeddings for them. If this
same house i also has an edge with a train station k in its neighbourhood, it also tries to
keep them close in the embedding space. The outcome is that, the first-order proximity
lets the model learn from the geospatial connectivity of a node’s local neighbourhood
amenities. Thus, the model essentially learns to embed the neighbourhood context of
a house, which customers may likely take into consideration while making purchase
decisions of a house and thus influence the price of the house.

3.3.2 Second-order proximity in geospatial network

While the first-order proximity can effectively capture the local neighbourhood context
of a node, it fails to capture latent similarity of two nodes beyond their immediate
neighbourhood when there are no direct edges between them.

However, consider the following scenario. If two houses are located in two geo-
graphically distant locations, yet both of them are connected to the same highly-rated
schools and transportation facilities (e.g. train stations) nearby, their geo-spatial
embedding should also be similar.

The second-order proximity between two nodes in a network essentially capture
the similarity between their neighbourhood network structure. Thus, to take advantage
of this fact, GSNE uses second-order proximity so that geographically distant houses
having similar neighbourhood structure are located closer in the embedding space. In
other words, it helps the model learn the global neighbourhood connectivity of the
network.

3.3.3 Proximity objectives

We adopt the widely used strategy of LINE (Tang et al. 2015) to compute our first- and
second-order proximities. As we embed nodes as Gaussian distributions, we employ
KL-divergence as our dissimilarity measure. Since our network is undirected and KL-
divergence is asymmetric in nature, we consider both directions of the edges. i.e. we
compute D(hi , h j ) + D(h j , hi ) the KL-divergence from both directions as suggested
in previous work (Bojchevski and Günnemann 2017). Let hi and h j represent the
Gaussian representations of nodes i and j , and d(hi , h j ) = D(hi , h j ) + D(h j , hi )
represent their KL-divergence dissimilarity measure.

First-order proximity For each (i, j) ∈ E , we take the joint probability between i
and j as:

p1(i, j) = 1

1 + exp (d(hi , h j ))
(4)
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With this joint probability, we take the first-order proximity objective O1 as follows.

O1 = −
∑

(i, j)∈E
wi j log p1(i, j) (5)

where wi j is the edge weight.
Second-order proximity For second-order proximity, each node i ∈ V requires both

attribute embedding hi and context embedding h′
i , which is treated as a context of

other nodes.
However, the traditional definition of second-order proximity (Tang et al. 2015) is

definedonlyonhomogeneous andbipartite networks, but notmultipartite networks like
ours. This causes a problem in negative node sampling (discussed in Sect. 3.4) which
inhibits the model from convergence. Thus, we modify the second-order proximity as
follows.

For each directed edge (i, j) ∈ E (undirected edges can be treated as two edges in
opposite directions), where i ∈ Vp and j ∈ Vq are nodes from two partitions Vp and
Vq respectively, the probability of the context of node j generated by node i is:

p2( j |i) = exp (−d(hi , h′
j ))

Σî∈Vq exp (−d(hi , h′
î
))

(6)

where î range over all nodes in partition Vq .
With this new definition of p2, we define our second-order proximity objective as

in LINE (Tang et al. 2015):

O2 = −
∑

(i, j)∈E
wi j log p2( j |i) (7)

In order to generate the context embedding h′
i = (μ′

i ,Σ
′
i ), we need a separate set

of encoders. We define f ′
k = (W ′

k, b
′
k) where W

′
k = {W ′

k1
,W ′

k2
} and b′

k = {b′
k1 , b

′
k2}

are the weight matrices and bias vectors for partition Vk ∈ V . For Gaussian context
embedding, with model parameters f ′

μ = (W ′
μ, b′

μ), f ′
Σ = (W ′

Σ, b′
Σ), we generate

context embedding as following:

u′
i = f ′

k(xi ) = ReLU (W ′
k2 z

′
i + b′

k2) where (8)

z′i = ReLU (W ′
k1xi + b′

k1)

μ′
i = f ′

μ(u′
i ) = ReLU (W ′

μu
′
i + b′

μ) (9)

Σ ′
i = f ′

Σ(u′
i ) = ELU (W ′

Σu′
i + b′

Σ) + 1 (10)

Similar to the encoders in Sect. 3.2, here W ′
k1

∈ R
l ′×Dk , W ′

k2
∈ R

l×l ′ , b′
k1 ∈ R

l ′ ,

b′
k2 ∈ R

l , W ′
μ,W ′

Σ ∈ R
L×l and b′

μ, b′
Σ ∈ R

L
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3.4 Model optimization

Since the objective function in Eq. 7 requires the summation over entire set of nodes
of the same type while calculating p2, it is computationally prohibitive. To alleviate
this issue, we use negative sampling (Tang et al. 2015). With this negative sampling
technique employed, objective O2 becomes:

O2 =
∑

(i, j)∈E,i∈Vp, j∈Vq

(
log σ(−d(hi , h′

j ))

+
N∑

n=1

Evn∼Pqn(v) log σ(d(hi , h′
vn

))
)

(11)

Here the first term optimizes the positive edges whereas the second term is con-

cerned with negative edges drawn from a noise distribution Pqn(v) ∝ d
3
4
v , where

v ∈ Vq and dv is the degree of the node(since the network is undirected). We use this
negative sampling strategy also in the calculation of O1 in Eq. 5, which is similar to
Eq.11 except h′ in the equation will be changed to h.

When O2 is optimized, the gradient gets multiplied by the edge weight. Since the
edgeweights are set to be the inverse of geographical distance, edges in our geo-spatial
network may have high weight variance. This may induce exploding gradient during
training phase. A naive solution to this problem is unwrapping an edge of weight
w units into w-binary unweighted edges so that the whole graph can be regarded as
unweighted. Yet, it is very inefficient from the memory perspective of the network.

To avoid exploding gradient without compromising memory efficiency, we use
edge sampling from an alias table as in Tang et al. (2015), where we efficiently sample
positive edges according to the distribution of the weights of the edges using alias
table.

3.5 Model training

The training algorithmofGSNE is presented inAlgorithm1.Here, in lines 1–4,wefirst
define and initialize the parameters of our network described previously. Lines 5–19
show themain training loop,where in each iterationwe select an edge setE ⊆ E (line 6)
where E represents connections between nodes between two partitions. Subsequently,
we sample a batch of positive edges from E as in Tang et al. (2015) (line 7). For each
of the positive edges, we also sample N negative edges. (line 9). Later we calculate
the Gaussian embeddings of the node pairs of sampled edges (lines 10–14). Finally,
we calculate the batch loss (lines 15–18) and optimize through the back propagation
and updating the parameters θ (line 19).
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Algorithm 1: The GSNE algorithm
Input: Network G = {V,X , E,W }, proximity, number of negative samples N , batch size b, total

iterations T
Output: Embedding hi for each node i ∈ V

1 Let θ = { fi }i∈{1,2,...,K }
⋃{ fμ, fΣ }

2 if proximity = second-order then
3 θ = θ

⋃{ f ′
i }i∈{1,2,...,K }

⋃{ f ′
μ, f ′

Σ }
4 Initialize θ

5 for iterations = 0 → T do
6 for each edge set E ⊆ E do
7 batch = FetchBatch(E, b)
8 for each edge (i, j) ∈ batch do
9 Neg(i) = NegativeSampling((i, j), N ,E)

10 Calculate hi (Eq. 2, 3)
11 if proximity = first-order then
12 Calculate h j , {hνk }νk∈Neg(i) � (Eq. 2, 3)

13 else
14 Calculate h′

j , {h′
νk

}νk∈Neg(i) � (Eq. 9, 10)

15 if proximity = first-order then
16 Calculate O1 � (Eq. 5)

17 else
18 Calculate O2 � (Eq. 11)

19 Update the parameters θ in the backpropagation stage

4 Experiments

To evaluate the efficacy of our geo-spatial network embedding (GSNE) method, we
apply it with a number of state-of-the-art regression models for the house price predic-
tion task on a large real-estate and POI datasets of Melbourne, Australia. Specifically,
our GSNE model is trained to obtain embeddings of houses. Then, we train each of
the house price prediction (regression) models by concatenating our generated GSNE
embeddings with the raw housing features (referred to as Raw + GSNE). We compare
the prediction performance of our method (Raw + GSNE) against the same regres-
sion models trained on raw housing features only as described in Sect. 4.1 (referred
to as “Raw"). To ensure the baseline, i.e., “Raw" method contains spatial lag in the
modeling, location details are also included along with the core housing features.

As the downstream regression models, we have chosen some of the best regression
models for house price prediction competition in Kaggle (Serigne 2017), the recent
house prediction models in Xin and Khalid (2018), Xiong et al. (2019) and Raviku-
mar (2017), and well known regression models such as LightGBM (Ke et al. 2017),
XGBoost (Chen and Guestrin 2016) and Gradient Boosting (Ravikumar 2017).

In the following, we first present the details of the dataset and the generation of geo-
spatial network in Sect. 4.1. We then discuss our performance metrics for evaluating
different algorithms in Sect. 4.3, followed by a discussion on the experimental setup
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in Sect. 4.4. We analyze our house price prediction results in Sect. 4.5, including an
ablation study on the effect of various components in our method. Finally, a qualitative
analysis of the embeddings are presented using visualizations in Sect. 4.6.

4.1 Dataset description

We conducted our experiments on the house transaction records obtained from a
real-estate web site2 for Melbourne, which is the second largest city in Australia by
population. We extracted a total of the 52,851 house transaction records of years from
2013 to 2015. Our dataset also includes the three types of POIs: regions, schools, and
train stations and their corresponding features. Houses are situated in regions which
capture the geographical contextual information about houses. Intuitively, informa-
tion about nearby schools and train stations may influence house prices. Our dataset
contains information of the 13,340 regions, 709 schools, and 218 train stations.

4.1.1 House and POI features

Housing features Our dataset contains information about a wide range of housing
features. In total, we consider 43 housing features for each house for in depth explo-
ration of the effect of GSNE. To the best of our knowledge, none of the prior works
considered such a wide range of feature sets in a large dataset like ours for house
price prediction task. Although the dataset in Kaggle competition (Serigne 2017) has
86 features, it has only 3000 samples in total and lots of columns are highly sparse
rendering only a few of those columns truly useful. Besides, no information regard-
ing neighbourhood amenities is available in that dataset. In our dataset, each house
record contains information ranging from basic housing features like number of bed-
rooms, number of bathrooms, number of parking spaces, location, type of property,
etc. to detailed facility features like air-conditioning, balcony, city-view, river-view,
swimming, tennis-court, etc. These features are listed in detail in Table 2.
Region features Our dataset contains Melbourne region information at SA1 level.3

SA1 is the most granular unit for the release of census data of Australia.4 The SA1
data typically has a population of 200 to 800 people with an average of 400 people
per region. For each region, our dataset contains comprehensive information about the
number of residents, average age, median personal income, percentage of Australian
citizens, educational qualification, median house rent, location as the centroid of the
region, etc. Since these aspects can be useful for determining house prices, we consider
all of them as the features for regions.
School features The schools in our dataset are attributed with the type of school
(primary or secondary), school category by gender(single gender or co-ed), ranking,
location, number of students, zone restrictions, number of students enrolled in Vic-

2 https://www.realestate.com.au/.
3 https://www.abs.gov.au/.
4 https://communityinsightaustralia.org/what-are-sas/.
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Table 2 Housing features
Number of bedrooms Fireplace

Number of bathrooms Fully fenced

Parking Gas heating

Property type Gym

Transaction date Heating

Agency Intercom

Latitude Laundry

Longitude Mountain

Air conditioning Park

Alarm Swimming pool

Balconey Renovated

BBQ River view

City view Rumpus room

Adjacency to schools Sauna

Adjacency to shops Study rooms

Adjacency to transport Sun room

Courtyard System heating

Number of dining rooms Tennis court

Dish wash Water views

Ducted Wordrobe

Ensuite Total additional features

Family rooms

torian Certificate of Education(VCE), percentage of students securing 40% marks,
etc.5

Train stationsThe train stations in the dataset contain information about their location
and average time to reach to other stations.6

4.1.2 Dataset pre-processing

From Fig. 2, we can see that the price distribution is skewed to the right. Since these
skewed datamay induce higher influence on the error calculation of themore expensive
houses, we apply the widely-used log-normalization to the prices as done in previous
works (Gao et al. 2019; Xiong et al. 2019). All performance measures are calculated
on these normalized prices.

For train stations and schools, we filled the missing values with the mean of the
corresponding feature, since there are only 709 schools and 218 train stations. Cate-
gorical variables have been handled by one-hot encoding. For feature standardization,
we use zero-mean, unit-variance on our dataset.

5 https://bettereducation.com.au/.
6 http://developers.google.com/maps/.
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Fig. 2 Price distribution of the houses before and after log-normalization

4.1.3 Geo-spatial network generation

From the dataset, we build a geo-spatial network using houses and the three differ-
ent types of POIs: regions, schools, and train stations. We generate the network by
considering the following edges: House-Region, House-School, House-Train Station,
and School-Train Station. In House-Region edges, every house in a region will be
connected to the corresponding region. For House-School edges, we connect a house
to all schools which are located in one kilometer radius. If there is no school found
within a kilometer range we connect the house to the nearest school. Similarly, we
form the edges between Houses and Train Stations. Apart from these three types of
house-POI connections, we also include School-Train Station edges as these can help
to model the transport options to a school from a house via train. While our network
is defined to be multi-partite, we allow Train Station-Train Station edges to keep the
whole geo-spatial network connected. Weights for all types of edges are based on the
Euclidean distance between the two nodes of the network. Since our primary focus is
to create geo-spatial embeddings for house price prediction, we disregard the edges
among POIs that seemingly do not have much impact in our problem domain.

Fig. 3 Training loss curve for GSNE

123



Boosting house price predictions...

4.2 Model training

We have built the GSNE model by following the steps as described in Algorithm 1.
Though most of the training steps are straightforward, the selection of a bipartite edge
set E ⊆ E in each iteration is an important factor to consider here as it may impact
model performance. We experiment with three strategies: (1) randomly selecting pairs
of connected partitions, (2) iteratively alternating between pairs of connected partitions
in every iteration, and (3) selecting a pair of connected partitions per 100 iterations
and alternate. We find that strategy (2), iterative alternation between bipartite edge
sets, is the strategy yielding the best result overall. Even though iterative alternation
causes the loss to be jumpy, the overall trend of the loss decreases as shown in Fig. 3.
On the other hand, the other two strategies lead towards early convergence to local
optima, resulting in higher training loss.

4.3 Performancemetrics

Following the prior works in this area, we use ‘mean absolute error’ (MAE) and ‘root
mean squared error’ (RMSE) as our metrics to evaluate our embedding model.

They are defined as:

MAE = 1

N

N∑

i=1

|zi − ẑi | (12)

RMSE =
√
√
√
√ 1

N

N∑

i=1

(
zi − ẑi

)2 (13)

Here zi represents the ground truth price and ẑi represents the predicted house price.
N represents the number of samples. However, these metrics introduce a problem as
higher prices influence the metrics much higher than the others (Xiong et al. 2019).
To mitigate this issue, we use the logarithmic form of sales (sold) price in prediction
as described in Sect. 4.1.2.

4.4 Experimental setup andmodel building

All experiments were performed on a server with 16GBmemory, and a 12GBNVIDIA
Tesla P100 GPU.

The dimension of our Gaussian embedding is set as L = 32. The total number
of iterations is set as T = 3, 00, 000. The batch size is set as b = 128, and the
number of negative samples is set as N = 5. The above sets of parameters are chosen
based on the empirical evaluation with our dataset. We divided our dataset into two
parts by using stratified random sampling, into 80% for unsupervised training of the
embedding model GSNE and 20% for testing the embedding model. Since the test set
is completely unseen in the training phase of the model, a good performance on the
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test set usually indicates that the embedding model successfully generalizes to unseen
nodes, i.e., the model is inductive.

4.5 House price prediction results

We evaluate the effectiveness of our embeddings by using them as features to train
various regression models. Specifically, we compare the performance of each regres-
sion model trained with two sets of features: with the house feature only (referred
to as “Raw”) and with the concatenation of the Raw features and our embeddings
(referred to as “Raw+GSNE”). We also consider three variants of the embeddings:
first-order proximity only (1st ), second-order proximity only (2nd ), and both the first-
and second-order (1st + 2nd ) proximities. In each case, we concatenate these embed-
dings with the original raw features and use them to train the downstream regression
models.

To ensure our comparison baseline “Raw” also include sufficient spatial lag in it’s
price model, we add the location details for the houses. We take this as representa-
tive of spatially aware prediction model as in Fik et al. (2003) since modern learning
algorithms can effectively capture spatial dependence without any complex feature
engineering required in OLS hedonic price models. We also experimented by adding
postcode dummies as in Fletcher et al. (2000), although it did not provide any improve-
ment in performance over location details. Hence, we did not include postcode features
in “Raw" feature set to ensure optimal performance in our comparison baseline while
accurately capturing spatial dependence.

We consider a wide range of learning models to compare the performance. We use
a number of widely-used regression models, including Lasso and Ridge regression as
in Xin and Khalid (2018), and random forest regression, elastic net regression, and
Kernel-ridge regression. Furthermore, we also train a number of state-of-the-art mod-
els including Gradient Boosting, XGBoost (Chen and Guestrin 2016), LightGBM (Ke
et al. 2017), which have recently been shown to yield good performance in this prob-
lem. Finally, we also evaluate the ensembles of these models, including averaging and
stacking with meta-model (Xiong et al. 2019). For Stacking, we used Gradient Boost-
ing, XGBoost, and Kernel-ridge regression as first stage models, and Kernel-ridge
regression as our meta model.

4.5.1 Result summary

Table 3 summarizes our house prediction results, where we observe that for all mod-
els, the Raw+GSNE-based house prediction results consistently outperform that with
the Raw features(including location information) only. We also observe that the less
expressive variants of our embeddings, first-order (1st ) or second-order(2nd ) proxim-
ity, also outperform Raw in all cases.

From Table 3, we observe that with MAE, our best performing embeddings,
i.e., Raw+GSNE (1st+2nd ), outperform Raw with different downstream models by
a notable margin ranging from 5.2 to 16.73%. Moreover in the best performing
model, Gradient Boosting, Raw+GSNE outperforms Raw by 8.1%. For RMSE,
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Table 4 Comparison against
spatial statistical approaches

MAE RMSE

Raw GBoost 0.136 0.195

GBoost + Kriging 0.157 0.268

GBoost + GSNE 0.125 0.181

SVD + Kriging (two features) 0.524 0.898

GBoost + GSNE (two features) 0.168 0.231

Raw+GSNE(1st+2nd ) outperforms different Raw based versions by a margin ranging
from 3.7 to 12.91% . These results indicate the efficacy of GSNE in modeling neigh-
bourhood preference, which significantly improves price prediction performance.

Performance against spatial statistical approach Since GSNE utilizes the neigh-
borhood amenity features for prediction of the prices, it is interesting to see how the
performance stacks up against spatial statistical approach. To experiment that, we first
use Kriging (Krige 1951) on the regression residual of Gradient Boosting Regression
to compare it against GSNE. Besides, we also compared our performance against a
recent work by Sikder and Züfle (2020), where the authors used Kriging on the output
of SVD based rating model to better model the spatial characteristics. To utilize SVD,
they built a house price matrix where rows are populated with unique latitude longi-
tude combinations, and columns with unique non-location feature combinations. This
strategy cannot handle high dimensional housing features due to extreme sparseness
of the matrix (only 0.005% available values in our dataset). Thus to make a fair com-
parison, we “dumbed down” our model to utilize only two housing features (number
of bedrooms and number of bathrooms) as done in Sikder and Züfle (2020). These
results are shown in Table 4.

Table 4 clearly shows that, spatial method like Kriging does not help in gaining
performance advantage over rawML approaches. In fact, the residuals of powerfulML
models show no spatial dependency which causes worse performance with Kriging
than standaloneML techniques.On the other hand, even in constrained features,GSNE
performs significantly better than SVD-RK (Sikder and Züfle 2020). These results
clearly show that GSNE extracts useful neighborhood information from nearby POIs
which gives GSNE based approach a performance.

Confidence intervalWe also calculate the 95% confidence interval of MAE on both
Raw and Raw+GSNE. For this comparison, we use Gradient Boosting Regression as
our downstream model, since it gives the best result in Table 3. We bootstrap sampled
the dataset 500 times, each time using 80% of the data to train, and 20% of the data to
test the model. Results in the test set are then used to generate the density plot for con-
fidence interval shown in Fig. 4. From the result, we can observe that 95% of the time
the MAE lies within 0.124 and 0.128 for our embeddings (Raw+GSNE), whereas for
Raw features only it lies within 0.1338 and 0.139. This analysis statistically validates
the efficacy of our proposed geo-spatial embedding in performance improvement.
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Fig. 4 Bootstrapped confidence interval comparison in Gradient Boost Regression. Here with 95% confi-
dence level, we can observe that the true MAE lies within 0.124 and 0.128 when our spatial embedding is
used with housing features, whereas for raw features only, this range lies within 0.1338 and 0.139

4.5.2 Varying price partitions

To gain a better insight of the performance of our approach, we analyze the price
prediction performance in different price quartiles of our dataset. We summarize these
results in Table 5.

From Table 5 we observe that, in every price quartile, Raw+GSNE outperforms
Raw.We also separately tested the performance on outliers: houses with prices outside
of the 3σ range of the distribution, where σ denotes the standard deviation of house
price distribution. Outliers represent houses that are significantly more challenging
to predict. Even on these outlier data, the features augmented with our embeddings
outperform the Raw features only.

From Table 5, we can also observe an interesting aspect of our geo-spatial embed-
dings. While the generated embeddings always improve prediction performance over
Raw features, the improvement is even more pronounced in the 1st and 4th quartile
price partitions. Intuitively, houses in the highest price category usually enjoy modern
amenities in the neighborhood, whereas these facilities are somewhat limited for the
cheapest houses. This explains why neighborhood context might be more influential
in the two ends of price partitions.

4.5.3 Impact of POIs on house price

To investigate howdifferent POIs impact house price prediction,we take the three types
of POIs, i.e. Region, School, and Train Station, separately and train our embedding
model on each of these nodes independently. To achieve this, we essentially take each
bipartite partition (house-region, house-train, or house-school) separately and train
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Table 5 Performance comparison in different price partitions using the Gradient Boosting regressor

MAE RMSE

Price Partition Raw Raw+GSNE Raw Raw+GSNE

1st Quartile 0.119 0.110 0.163 0.155

2nd Quartile 0.106 0.102 0.138 0.133

3rd Quartile 0.122 0.115 0.157 0.149

4th Quartile 0.173 0.159 0.228 0.212

Outside 3σ 0.518 0.473 0.678 0.640

Table 6 Comparison of the
effect of different POIs on house
price with the Gradient Boosting
Regressor

MAE RMSE

Regions 0.131 0.188

Train station 0.127 0.184

School 0.126 0.182

GSNE (All nodes) 0.125 0.181

GSNE on these networks. The generated embeddings are then channeled through the
Gradient Boosting Regressor model. These results are presented in Table 6.

As we can observe from the table, even the consideration of each POI node sep-
arately gives us substantial performance improvements over raw features. Table 6
also reveals an interesting insights on how neighbouring transportation facilities and
educational institutes are influential in predicting house prices. Nevertheless, training
GSNE with all types of POIs yields the best results both in terms of MAE and RMSE.

4.6 Visualization

We visualize how GSNE embeds neighbourhood information for different POI cat-
egory to qualitatively analyse embedding quality. In Fig. 5 we show separate t-SNE
(van der Maaten and Hinton 2008) visualizations for the categories regions and train
stations. Since each of these categories contains a large number of POIs, we select the
top 10 POIs of each category that have the highest number of houses in its neighbour-
hood. We use these POIs as the labels of each house in its neighbourhood. In other
words, if a house i has an edge with a train station j , we use j as the label of the
house. Consequently, different colours in the visualization represent different POIs in
that category.

Figure 5a contains the t-SNE visualization for the ten regions as well as a map view
of these regions, which shows their geographical locations. The t-SNE plots reveal that
the separation is evident, such that houses in similar regions are closely clustered to
each other. A deeper look at the plot reveals more insights about the efficacy of GSNE.
In the map we can see that region labeled as 0 and 3 are located in the top left corner
(marked with red and green respectively), and they are close to each other. Their close
vicinity is reflected in the embedding, as can be seen in the t-SNE plot, where the red
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Fig. 5 (Best viewed in color) 2-D visualization of the generated geo-spatial embeddings. a Visualization
of houses adjacent to 10 regions (shown in map). These regions are taken as labels of different colors for
the houses. b Visualization of houses adjacent to 10 train stations (shown in map). In both cases, we chose
10 of the POIs that have the highest number of houses in the neighbourhood for a better visibility

and green clusters are very close to each other. It can also be observed that these two
clusters overlap each other. With further investigation of the dataset, we discovered
that the overlapping houses have a number of identical features, including median
age, median house rent, median weekly income, and median rent. In other words,
even though these two regions are not immediately next to each other geographically,
they share highly similar features in terms of overall regional information.

Another interesting case appears with region labeled as 5 and region 8, coloured in
cyan and purple respectively. In the map, we can see that these two regions are located
close geographically. Yet they have very distinct feature sets. Houses in region 5 have
almost twice the number of residents than region 8, while only half of the median
income of the residents of region 8. Features such as median age, weekly house rent
etc. are also distinct. These two cases give us an important insight about how GSNE
embeds neighbourhood information in terms of the POI features. While it captures the
neighbourhood information effectively, it also effectively captures the similarity of
neighbourhoods in terms of their features. We see make similar observations about the
other visible clusters. Regions labeled 1, 2, and 4 are very far from the other regions
having distinctive features. They are also well separated from other clusters in the
embedding space. Region 6 and 9 seem to be quite close geographically. Their feature
sets are very similar with same median house rent, same median age, and similar
median income. As can be observed, houses in these two regions are also closely
clustered. From the analysis of this visualization, the efficacy of GSNE becomes quite
evident.

In Fig. 5b we show the t-SNE visualization for train stations and the corresponding
map view. Here we can also observe good separations of clusters. From the map, it can
be seen that the train stations labeled as 0 and 3 (marked red and green respectively)
are located close to each other. These two stations also have identical feature sets.
Their close vicinity can be observed in the t-SNE plot, showing the efficacy of our
embedding model. Train station 1, 7, and 8 are far away from the other stations and
each other, geographically, which is reflected in the t-SNE plot. On the other hand,
station 2, 4, 5, 6, 9 are close geographically. In the embedding space, we see the
clusters to be quite close for 2, 5, 6, 9. However, the cluster for the station labeled
as 4 is more separated from the above clusters. From the feature sets, we observed
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Table 7 Comparison of model
performance in different
embedding dimensions

Embedding dimension MAE RMSE

8 0.128 0.184

16 0.127 0.182

32 0.125 0.181

40 0.131 0.187

that the average time required to travel to other stations from station 4 is much lower
compared to from stations 2, 5, 6, 9, which is an indicator of better connectivity of
station 4. This essentially explains how the cluster of houses in the neighbourhood of
station 4 achieves separation over the other nearby stations.

This visualization highlights insight about GSNE’s capability to extract neighbor-
hood characteristics based on the nearby POIs and their features. During training,
as we try to project houses and their adjacent POIs in the embedding space, GSNE
basically aggregates the POI information in the generated embedding. Consequently,
in the t-SNE diagram we can see the embeddings that create meaningful separated
clusters based on different POIs and their features.

4.7 Effect of embedding dimension

To check the effect of embedding dimension on overall performance, we investigate
the performance on downstream GBoost model with different values of L . The results
are shown in Table 7. From the results we can see even in low embedding dimension
(8 or 16), GSNE performs reasonably well.

4.8 Ablation studies

From the performance comparison in Table 3, we can discern the effect of 1st - and
2nd -order proximities in the final result. We can observe that GSNE with either 1st - or
2nd -order proximity alone achieves noteworthy improvements over the performance
of the raw features. Another notable fact is that, for regression models with higher
expressive powers, we see comparable improvements for both 1st - and 2nd -order
proximity version of GSNE. Nevertheless, in every case, the GSNE(1st + 2nd ) sees
the highest improvement. This indicates that the local and global features extracted
respectively by 1st - and 2nd -order proximity complement each other, and their com-
bination results in best performance in any chosen regression model. We also observe
that the geo-spatial embedding alone (without concatenating with the raw housing
features) achieves 0.222 MAE and 0.306 RMSE, which also validates our claims on
the importance of neighbourhood contextual information in housing preferences.

The potency of GSNE embeddings in house price prediction is also visible from
the confidence interval (C.I.) plot of the Gradient Boosting Regressor in Fig. 4. Here
we bootstrap our dataset 500 times with 80% train and 20% test set, with which
we train the Gradient Boost Regressor and examine its performance. From the plot,
with 95% probability we can observe that GSNE embeddings along with raw fea-
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tures achieves an MAE between 0.124 and 0.128. These two tails are respectively
7.32% and 7.91% better than the raw features confidence interval results where this
range lies between 0.1338 and 0.139. These observations clearly demonstrate that the
performance improvements of our approach is consistent over the whole dataset.

From Table 6, we see that each of the different POI types gives different effects in
house price prediction performance. Even though all of them improve performance
when considered separately, we can see that the School POI type improves the per-
formance by the highest margin. This may indicate that in deciding the purchase of
a house, buyers may value educational institutions over other POIs. We also observe
that Train Station POI type also gives a good house prediction performance boost
as transport facilities in the neighborhood influence buyers’ choices on a house. Yet,
using all POI types in the embedding gives us the best performance, which indicates
that all the POI types improve the performance of house price prediction.

Finally, Table 7 shows the performance of GSNE with different embedding dimen-
sions. As the embedding dimension increases, the performance improves, where the
best performance is achieved at the dimension 32. We can see that even in the low
dimensions, the performance impact is negligible, which shows the robustness of
GSNE.

5 Conclusion and future works

In this paper, we have proposed a novel geo-spatial network embedding (GSNE)
framework to accurately capture the geo-spatial neighborhood relationships between
houses and surrounding POIs. TheGSNE essentially learns low-dimensional Gaussian
embeddings of nodes of a geo-spatial network. We have validated the efficacy of the
GSNE in the house price prediction task, where our detailed experimental evaluation
shows that GSNE features combined with the raw housing features can predict house
prices with a higher accuracy (i.e., 8.1% lowerMAE and 7.2% lower RMSE) than that
of the best performing state of the art methods that only consider standalone house
features. It is important to note that though we validate the proposed GSNE on the
house price prediction problem in this paper, our proposed geo-spatial embedding can
be highly effective in answering other real estate queries like recommending similar
houses, which is of independent interest.

In future, we plan to explore how other complex house features such as textual
description and images can be embedded in the multi-modal feature space to further
enhance house price predictions. Another interesting area is to investigate potentiality
of GSNE in other spatial domains such as tourist spot recommendation and alternative
path suggestion as these applications can be greatly influenced by the nearby POIs
and their attributes. Experimenting with other variants of network embedding in this
framework can be another interesting area to look into. It will be also interesting to
investigate how a geospatial model like GSNE learned in one city can be transferred
to a geographically distant different city with minimal training data for fine-tuning.
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