
Software Impacts 8 (2021) 100069

B

Contents lists available at ScienceDirect

Software Impacts

journal homepage: www.journals.elsevier.com/software-impacts

Original software publication

An open-source framework for ExpFinder integrating𝑁-gram vector space
model and μCO-HITS
Hung Du a, Yong-Bin Kang b,∗

a Department of Computer Science and Software Engineering, Swinburne University of Technology, Australia
b Department of Media and Communication, Swinburne University of Technology, Australia

A R T I C L E I N F O

Keywords:
ExpFinder
Expert finding
N-gram vector space model
μCO-HITS
Expert collaboration graph

A B S T R A C T

Finding experts drives successful collaborations and high-quality product development in academic and
research domains. To contribute to the expert finding research community, we have developed ExpFinder
which is a novel ensemble model for expert finding by integrating an 𝑁-gram vector space model (𝑛VSM) and a
graph-based model (μCO-HITS). This paper provides descriptions of ExpFinder’s architecture, key components,
functionalities, and illustrative examples. ExpFinder is an effective and competitive model for expert finding,
significantly outperforming a number of expert finding models as presented in Kang et al. (2021).

Code metadata

Current code version v1.0
Permanent link to code/repository used for this code version https://github.com/SoftwareImpacts/SIMPAC-2021-18
Permanent link to Reproducible Capsule https://codeocean.com/capsule/9243982/tree/v1
Legal Code License MIT License (MIT)
Code versioning system used git
Software code languages, tools, and services used Python
Compilation requirements, operating environments & dependencies Python environment version 3.6 or above, pandas, networkx, NumPy, scikit-learn,

nltk, SciPy, Torch, Transformers, SciBERT
Link to developer documentation/manual https://github.com/Yongbinkang/ExpFinder/blob/main/README.md
Support email for questions ykang@swin.edu.au, hungdu@swin.edu.au

1. Introduction

Identifying experts given a query topic, known as expert finding,
is a crucial task that accelerates rapid team formation for research
innovations or business growth. Existing expert finding models can be
classified into three categories such as vector space models (VSM) [1,2],
document language models (DLM) [3–5], or graph-based models (GM) [6–
8]. ExpFinder [9] is an ensemble model for expert finding which
integrates a novel 𝑁-gram VSM (𝑛VSM) with a GM (𝜇CO-HITS)-a
variant of the generalized CO-HITS algorithm [6].

As seen in Fig. 1, ExpFinder has 𝑛VSM, a vector space model,
as a key component that estimates the weight of an expert and a
document given a topic by leveraging the Inverse Document Frequency
(IDF) weighting [10] for 𝑁-gram words (simply 𝑁-grams). Another

The code (and data) in this article has been certified as Reproducible by Code Ocean: (https://codeocean.com/). More information on the Reproducibility
adge Initiative is available at https://www.elsevier.com/physical-sciences-and-engineering/computer-science/journals.
∗ Corresponding author.
E-mail addresses: hungdu@swin.edu.au (H. Du), ykang@swin.edu.au (Y.-B. Kang).

key component in ExpFinder is 𝜇CO-HITS that is used to reinforce
the weights of experts and documents given a topic in 𝑛VSM using an
Expert Collaboration Graph (ECG) that is a certain form of an expert
social network. The output of ExpFinder is the reinforced weights of
experts given topics.

ExpFinder is designed and developed to improve the performance
for expert finding. In this paper, we highlight two main contributions
to the expert finding community. First, we provide a comprehensive
implementation detail of all steps taken in ExpFinder. It could also
be used as an implementation guideline for developing various DLM-,
VSM- and GM-based expert finding approaches. Second, we illustrate
how ExpFinder works with a simple example, thus researchers and
practitioners can easily understand ExpFinder’s design and implemen-
tation.
https://doi.org/10.1016/j.simpa.2021.100069
Received 1 March 2021; Received in revised form 14 March 2021; Accepted 19 March 2021

2665-9638/© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

https://doi.org/10.1016/j.simpa.2021.100069
http://www.journals.elsevier.com/software-impacts
http://www.journals.elsevier.com/software-impacts
http://crossmark.crossref.org/dialog/?doi=10.1016/j.simpa.2021.100069&domain=pdf
https://github.com/SoftwareImpacts/SIMPAC-2021-18
https://github.com/SoftwareImpacts/SIMPAC-2021-18
https://github.com/SoftwareImpacts/SIMPAC-2021-18
https://github.com/SoftwareImpacts/SIMPAC-2021-18
https://github.com/SoftwareImpacts/SIMPAC-2021-18
https://github.com/SoftwareImpacts/SIMPAC-2021-18
https://github.com/SoftwareImpacts/SIMPAC-2021-18
https://github.com/SoftwareImpacts/SIMPAC-2021-18
https://github.com/SoftwareImpacts/SIMPAC-2021-18
https://github.com/SoftwareImpacts/SIMPAC-2021-18
https://github.com/SoftwareImpacts/SIMPAC-2021-18
https://github.com/SoftwareImpacts/SIMPAC-2021-18
https://github.com/SoftwareImpacts/SIMPAC-2021-18
https://github.com/SoftwareImpacts/SIMPAC-2021-18
https://github.com/SoftwareImpacts/SIMPAC-2021-18
https://github.com/SoftwareImpacts/SIMPAC-2021-18
https://github.com/SoftwareImpacts/SIMPAC-2021-18
https://github.com/SoftwareImpacts/SIMPAC-2021-18
https://github.com/SoftwareImpacts/SIMPAC-2021-18
https://github.com/SoftwareImpacts/SIMPAC-2021-18
https://github.com/SoftwareImpacts/SIMPAC-2021-18
https://github.com/SoftwareImpacts/SIMPAC-2021-18
https://github.com/SoftwareImpacts/SIMPAC-2021-18
https://github.com/SoftwareImpacts/SIMPAC-2021-18
https://github.com/SoftwareImpacts/SIMPAC-2021-18
https://github.com/SoftwareImpacts/SIMPAC-2021-18
https://github.com/SoftwareImpacts/SIMPAC-2021-18
https://github.com/SoftwareImpacts/SIMPAC-2021-18
https://github.com/SoftwareImpacts/SIMPAC-2021-18
https://github.com/SoftwareImpacts/SIMPAC-2021-18
https://github.com/SoftwareImpacts/SIMPAC-2021-18
https://github.com/SoftwareImpacts/SIMPAC-2021-18
https://github.com/SoftwareImpacts/SIMPAC-2021-18
https://github.com/SoftwareImpacts/SIMPAC-2021-18
https://github.com/SoftwareImpacts/SIMPAC-2021-18
https://github.com/SoftwareImpacts/SIMPAC-2021-18
https://github.com/SoftwareImpacts/SIMPAC-2021-18
https://github.com/SoftwareImpacts/SIMPAC-2021-18
https://github.com/SoftwareImpacts/SIMPAC-2021-18
https://github.com/SoftwareImpacts/SIMPAC-2021-18
https://github.com/SoftwareImpacts/SIMPAC-2021-18
https://github.com/SoftwareImpacts/SIMPAC-2021-18
https://github.com/SoftwareImpacts/SIMPAC-2021-18
https://github.com/SoftwareImpacts/SIMPAC-2021-18
https://github.com/SoftwareImpacts/SIMPAC-2021-18
https://github.com/SoftwareImpacts/SIMPAC-2021-18
https://github.com/SoftwareImpacts/SIMPAC-2021-18
https://github.com/SoftwareImpacts/SIMPAC-2021-18
https://github.com/SoftwareImpacts/SIMPAC-2021-18
https://codeocean.com/capsule/9243982/tree/v1
https://codeocean.com/capsule/9243982/tree/v1
https://codeocean.com/capsule/9243982/tree/v1
https://codeocean.com/capsule/9243982/tree/v1
https://codeocean.com/capsule/9243982/tree/v1
https://codeocean.com/capsule/9243982/tree/v1
https://codeocean.com/capsule/9243982/tree/v1
https://codeocean.com/capsule/9243982/tree/v1
https://codeocean.com/capsule/9243982/tree/v1
https://codeocean.com/capsule/9243982/tree/v1
https://codeocean.com/capsule/9243982/tree/v1
https://codeocean.com/capsule/9243982/tree/v1
https://codeocean.com/capsule/9243982/tree/v1
https://codeocean.com/capsule/9243982/tree/v1
https://codeocean.com/capsule/9243982/tree/v1
https://codeocean.com/capsule/9243982/tree/v1
https://codeocean.com/capsule/9243982/tree/v1
https://codeocean.com/capsule/9243982/tree/v1
https://codeocean.com/capsule/9243982/tree/v1
https://codeocean.com/capsule/9243982/tree/v1
https://codeocean.com/capsule/9243982/tree/v1
https://codeocean.com/capsule/9243982/tree/v1
https://codeocean.com/capsule/9243982/tree/v1
https://codeocean.com/capsule/9243982/tree/v1
https://codeocean.com/capsule/9243982/tree/v1
https://codeocean.com/capsule/9243982/tree/v1
https://codeocean.com/capsule/9243982/tree/v1
https://codeocean.com/capsule/9243982/tree/v1
https://codeocean.com/capsule/9243982/tree/v1
https://codeocean.com/capsule/9243982/tree/v1
https://codeocean.com/capsule/9243982/tree/v1
https://codeocean.com/capsule/9243982/tree/v1
https://codeocean.com/capsule/9243982/tree/v1
https://codeocean.com/capsule/9243982/tree/v1
https://codeocean.com/capsule/9243982/tree/v1
https://codeocean.com/capsule/9243982/tree/v1
https://codeocean.com/capsule/9243982/tree/v1
https://codeocean.com/capsule/9243982/tree/v1
https://codeocean.com/capsule/9243982/tree/v1
https://codeocean.com/capsule/9243982/tree/v1
https://codeocean.com/capsule/9243982/tree/v1
https://codeocean.com/capsule/9243982/tree/v1
https://codeocean.com/capsule/9243982/tree/v1
https://codeocean.com/capsule/9243982/tree/v1
https://codeocean.com/capsule/9243982/tree/v1
https://github.com/Yongbinkang/ExpFinder/blob/main/README.md
https://github.com/Yongbinkang/ExpFinder/blob/main/README.md
https://github.com/Yongbinkang/ExpFinder/blob/main/README.md
https://github.com/Yongbinkang/ExpFinder/blob/main/README.md
https://github.com/Yongbinkang/ExpFinder/blob/main/README.md
https://github.com/Yongbinkang/ExpFinder/blob/main/README.md
https://github.com/Yongbinkang/ExpFinder/blob/main/README.md
https://github.com/Yongbinkang/ExpFinder/blob/main/README.md
https://github.com/Yongbinkang/ExpFinder/blob/main/README.md
https://github.com/Yongbinkang/ExpFinder/blob/main/README.md
https://github.com/Yongbinkang/ExpFinder/blob/main/README.md
https://github.com/Yongbinkang/ExpFinder/blob/main/README.md
https://github.com/Yongbinkang/ExpFinder/blob/main/README.md
https://github.com/Yongbinkang/ExpFinder/blob/main/README.md
https://github.com/Yongbinkang/ExpFinder/blob/main/README.md
https://github.com/Yongbinkang/ExpFinder/blob/main/README.md
https://github.com/Yongbinkang/ExpFinder/blob/main/README.md
https://github.com/Yongbinkang/ExpFinder/blob/main/README.md
https://github.com/Yongbinkang/ExpFinder/blob/main/README.md
https://github.com/Yongbinkang/ExpFinder/blob/main/README.md
https://github.com/Yongbinkang/ExpFinder/blob/main/README.md
https://github.com/Yongbinkang/ExpFinder/blob/main/README.md
https://github.com/Yongbinkang/ExpFinder/blob/main/README.md
https://github.com/Yongbinkang/ExpFinder/blob/main/README.md
https://github.com/Yongbinkang/ExpFinder/blob/main/README.md
https://github.com/Yongbinkang/ExpFinder/blob/main/README.md
https://github.com/Yongbinkang/ExpFinder/blob/main/README.md
https://github.com/Yongbinkang/ExpFinder/blob/main/README.md
https://github.com/Yongbinkang/ExpFinder/blob/main/README.md
https://github.com/Yongbinkang/ExpFinder/blob/main/README.md
https://github.com/Yongbinkang/ExpFinder/blob/main/README.md
https://github.com/Yongbinkang/ExpFinder/blob/main/README.md
https://github.com/Yongbinkang/ExpFinder/blob/main/README.md
https://github.com/Yongbinkang/ExpFinder/blob/main/README.md
https://github.com/Yongbinkang/ExpFinder/blob/main/README.md
https://github.com/Yongbinkang/ExpFinder/blob/main/README.md
https://github.com/Yongbinkang/ExpFinder/blob/main/README.md
https://github.com/Yongbinkang/ExpFinder/blob/main/README.md
https://github.com/Yongbinkang/ExpFinder/blob/main/README.md
https://github.com/Yongbinkang/ExpFinder/blob/main/README.md
https://github.com/Yongbinkang/ExpFinder/blob/main/README.md
https://github.com/Yongbinkang/ExpFinder/blob/main/README.md
https://github.com/Yongbinkang/ExpFinder/blob/main/README.md
https://github.com/Yongbinkang/ExpFinder/blob/main/README.md
https://github.com/Yongbinkang/ExpFinder/blob/main/README.md
https://github.com/Yongbinkang/ExpFinder/blob/main/README.md
https://github.com/Yongbinkang/ExpFinder/blob/main/README.md
https://github.com/Yongbinkang/ExpFinder/blob/main/README.md
https://github.com/Yongbinkang/ExpFinder/blob/main/README.md
https://github.com/Yongbinkang/ExpFinder/blob/main/README.md
https://github.com/Yongbinkang/ExpFinder/blob/main/README.md
https://github.com/Yongbinkang/ExpFinder/blob/main/README.md
https://github.com/Yongbinkang/ExpFinder/blob/main/README.md
https://github.com/Yongbinkang/ExpFinder/blob/main/README.md
https://github.com/Yongbinkang/ExpFinder/blob/main/README.md
https://github.com/Yongbinkang/ExpFinder/blob/main/README.md
https://github.com/Yongbinkang/ExpFinder/blob/main/README.md
https://github.com/Yongbinkang/ExpFinder/blob/main/README.md
https://github.com/Yongbinkang/ExpFinder/blob/main/README.md
https://github.com/Yongbinkang/ExpFinder/blob/main/README.md
mailto:ykang@swin.edu.au
mailto:ykang@swin.edu.au
mailto:ykang@swin.edu.au
mailto:ykang@swin.edu.au
mailto:ykang@swin.edu.au
mailto:ykang@swin.edu.au
mailto:ykang@swin.edu.au
mailto:ykang@swin.edu.au
mailto:ykang@swin.edu.au
mailto:ykang@swin.edu.au
mailto:ykang@swin.edu.au
mailto:ykang@swin.edu.au
mailto:ykang@swin.edu.au
mailto:ykang@swin.edu.au
mailto:ykang@swin.edu.au
mailto:ykang@swin.edu.au
mailto:ykang@swin.edu.au
mailto:hungdu@swin.edu.au
mailto:hungdu@swin.edu.au
mailto:hungdu@swin.edu.au
mailto:hungdu@swin.edu.au
mailto:hungdu@swin.edu.au
mailto:hungdu@swin.edu.au
mailto:hungdu@swin.edu.au
mailto:hungdu@swin.edu.au
mailto:hungdu@swin.edu.au
mailto:hungdu@swin.edu.au
mailto:hungdu@swin.edu.au
mailto:hungdu@swin.edu.au
mailto:hungdu@swin.edu.au
mailto:hungdu@swin.edu.au
mailto:hungdu@swin.edu.au
mailto:hungdu@swin.edu.au
mailto:hungdu@swin.edu.au
mailto:hungdu@swin.edu.au
mailto:hungdu@swin.edu.au
mailto:ykang@swin.edu.au
https://doi.org/10.1016/j.simpa.2021.100069
http://creativecommons.org/licenses/by-nc-nd/4.0/

H. Du and Y.-B. Kang Software Impacts 8 (2021) 100069

a
s
E

2

s
n
c
p
f

Fig. 1. The overview of ExpFinder.

This paper is organized as follows. Section 2 describes ExpFinder’s
rchitecture and functionalities. Section 3 demonstrates the procedural
teps in ExpFinder. Section 4 provides the impact and conclusion of
xpFinder.

. Functionality

ExpFinder is implemented in Python (version ≥ 3.6) with open-
ource libraries such as pandas, NumPy, scikit-learn, SciPy,
ltk, and networkx. In this section, we present its architecture, key
omponents, and their functionalities. The architecture of ExpFinder is
resented in Fig. 2 that consists of four key steps with the corresponding
unctions and their functional dependencies:

1. Step 1 - Extract tokens and topics: Given an expertise source
 (e.g., scientific publications) of experts  , we extract exper-
tise topics by using tokenise_doc() in extractor.py. We
assume that expertise topics are represented in the forms of noun
phrases. For each document 𝑑 ∈ , the function splits it into sen-
tences. Then, for each sentence, the function removes stopwords,
assigns a part of speech (POS) to each word, merges the inflected
forms of a word (i.e., the lemmatisation process, for example,
‘patients’ is lemmatized to ‘patient’), and extracts single-word
terms (called tokens) and topics with a given linguistic pattern.
In addition, we use a regular expression (regex) in Python to
construct a linguistic pattern based on POS that is further used
for extracting four different types of topics as shown in Fig. 3.
Note that we use nltk for performing this process. The output
of this step is the list of the tokens and the list of topics for each
document 𝑑 ∈ . The set of the all tokens is denoted as  , and
the set of the all topics is denoted as  .

2. Step 2 - Estimate the weights of experts and documents
given topics in 𝑛VSM: The process includes four main steps with
the corresponding functions in generator.py:

2.1 We use generate_tf() to estimate the term frequen-
cies (TFs) of  in each document 𝑑 ∈ . For this estima-
tion, we use CountVectoerizer in scikit-learn.
The output of this function is the || × || Document-
Token matrix (DTM) where each entry contains the TF of
𝑤 ∈  in 𝑑.

2.2 We use generate_dp_matrix() to estimate the
weights of documents given  in 𝑛VSM [9]. The function
estimates 𝑛TFIDF of each topic 𝑡 ∈  by integrating

𝑛TF estimates the frequency of 𝑡 by averaging TFs of
tokens in 𝑡 where TF of each token is stored in DTM. In
addition, 𝑛IDF [10] is the 𝑁-gram IDF weighting method
that estimates the log-IDF, log ||×𝑑𝑓 (𝑡)+1

𝑑𝑓 (𝑤1∧𝑤2∧…∧𝑤𝑛)2+1
+ 1, of 𝑡

where 𝑤1,… , 𝑤𝑛 are 𝑛-constituent terms in 𝑡. The output
of this step is the ||×| | Document-Phrase matrix (DPM)
where each entry contains the 𝑛TFIDF weight of 𝑡 in 𝑑.

2.3 Given , we use generate_ed_matrix() to generate
the ||× || Expert-Document matrix (EDM) where each
entry shows a binary relationship between 𝑥 ∈  and 𝑑
(e.g., 1 indicates that 𝑥 has the authorship on 𝑑, and 0
otherwise).

2.4 We use generate_pr_matrix() to estimate the
weights of experts  and documents  given each topic
𝑡 ∈  in 𝑛VSM [9]. The weights of  are estimated
by calculating matrix multiplication of 𝐄𝐃𝐌||×|| and
𝐃𝐏𝐌||×| | (e.g., ETopM = numpy.matmul(EDM,
DPM) in Python). The output is the || × | | Expert-
Topic matrix (ETopM) where each entry contains the
topic-sensitive weight of 𝑥 given 𝑡. The weights of 
are represented by DPM. Now, we denote DPM as the
|| × | | Document-Topic matrix (DTopM) where each
entry shows the topic-sensitive weight of 𝑑 given 𝑡. It is
worth noting that DPM can be integrated with another
factor (e.g., the average document frequencies of ) to
obtain different weights for DTopM. However, in our
approach, we set 𝐃𝐓𝐨𝐩𝐌 = 𝐃𝐏𝐌.

3. Step 3 - Construct ECG. We use generate_ecg() in gener-
ator.py to handle this step. The function receives  and builds
an ECG using DiGraph in networkx to present a directed,
weighted bipartite graph that has expert nodes 𝑉𝑥 and document
nodes 𝑉𝑑 . The set of nodes in the graph is denoted as 𝑉 such
that 𝑉 = 𝑉𝑥 ∪ 𝑉𝑑 . A directed edge points from a document node
𝑣𝑑 ∈ 𝑉𝑑 to an expert node 𝑣𝑥 ∈ 𝑉𝑥 if 𝑥 has published 𝑑. In this
step, we also use generate_ed_vector() in generator.py
to generate a |𝑉 | × 1 Expert-Count vector (𝒄𝒙) and a |𝑉 | × 1
Document-Count (𝒄𝒅) vector based on ECG. These vectors are
used for the estimation of 𝜇CO-HITS in Step 4.

4. Step 4 - Reinforce expert weights using 𝜇CO-HITS. We use
run_expfinder() in trainer.py to handle this step. The
function receives ETopM, DTopM, ECG, 𝒄𝒙 and 𝒄𝒅 , generated
in (Steps 2 and 3) as parameters, and reinforces the estima-
tion of expert weights given topics by integrating 𝑛VSM and
𝜇CO-HITS [9]. For each 𝑡 ∈  , we perform the three steps:
the 𝑛TF weighting and the 𝑛IDF weighting. Intuitively,

2

H. Du and Y.-B. Kang Software Impacts 8 (2021) 100069
Fig. 2. The architecture and functional workflow of ExpFinder: blue labels indicate module names of ExpFinder, and ‘Output Relation’ maps the functional component to the
corresponding processing step. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

4.1 Generate the adjacency matrix of nodes and its trans-
pose - Given the ECG, we use to_matrix() in net-
workx to generate the |𝑉 | × |𝑉 | adjacency matrix of
the graph 𝐌, and also construct its transpose matrix
𝐌⊤. These matrices are required in the initialization for
running the 𝜇CO-HITS algorithm.

4.2 Normalize the weights of experts and documents
given a topic - We get topic-sensitive weights of  and 
given 𝑡 from ETopM and DTopM, respectively. The output
of this includes the || × 1 Expert-Topic (𝜶𝒙) and || × 1
Document-Topic (𝜶𝒅) vectors where each entry shows the
topic-sensitive weight of an expert and a document given
𝑡, respectively. Then, we normalize these vectors using
L2 normalization to scale their squares sum to 1 as the
initialization for running the 𝜇CO-HITS algorithm [11].

4.3 Reinforce expert weights given a topic - We integrate
𝑛VSM and 𝜇CO-HITS through 𝑘 iterations to reinforce
expert weights given 𝑡. 𝜇CO-HITS is the extension of the
CO-HITS algorithm [6] which contains two main proper-
ties such as average authorities 𝒂 and average hubs 𝒉 which
show importance of  and , respectively, based on the
ECG. In addition, these properties can be defined as [9]:

𝒂( ; 𝑡)𝑘 = (1 − 𝜆𝑥)𝒂( ; 𝑡)𝑘−1 + 𝜆𝑥

(

𝐌⊤ ⋅ 𝒉(; 𝑡)𝑘−1

𝒄𝒅

)

(1)

𝒉(; 𝑡)𝑘 = (1 − 𝜆𝑑)𝒉(; 𝑡)𝑘−1 + 𝜆𝑑

(

𝐌 ⋅ 𝒂( ; 𝑡)𝑘

𝒄𝒙

)

(2)

where

• 𝒂( ; 𝑡)𝑘 and 𝒉(; 𝑡)𝑘 are |𝑉 |×1 vectors which contain
the reinforced expert weights and reinforced docu-
ment weights, respectively, given 𝑡 at 𝑘th iteration.
As the initial weights of these vectors, we use the
topic-sensitive weights of experts and documents es-
timated in 𝑛VSM. Thus, 𝒂( ; 𝑡)0 = 𝜶𝒙 and 𝒉(; 𝑡)0 =
𝜶𝒅 . By doing so, we integrate 𝑛VSM with 𝜇CO-HITS.
Note that 𝒂( ; 𝑡)0 is a ||×1 vector, and 𝒉(; 𝑡)0 is a
||×1 vector. However, for easily implementing the
HITS algorithm, we have transformed the dimension
of these vectors into |𝑉 |×1 vectors where additional
entries hold the value of 0.

Fig. 3. The Python regular expression of a linguistic pattern for extracting topics in a
single document.

• 𝜆𝑥 ∈ [0, 1] and 𝜆𝑑 ∈ [0, 1] are parameters for expert
and document, respectively. These are used to con-
trol the impact of topic-sensitive weights on 𝒂 and
𝒉, respectively. Assigning lower values indicates the
higher impact of topic-sensitive weights on 𝒂 and 𝒉.

•
(

𝐌⊤⋅𝒉(;𝑡)𝑘−1
𝒄𝒅

)

is the calculation for the average au-
thorities. The numerator performs matrix multiplica-
tion between the |𝑉 |× |𝑉 | adjacency matrix 𝐌⊤ and
the |𝑉 | × 1𝒉. The denominator is a |𝑉 | × 1 counted
vector 𝒄𝒅 generated in Step 3. To calculate this
in Python, we simply apply numpy.matmul(𝐌⊤,
𝒉(; 𝑡)𝑘−1)/𝒄𝒅 .

•
(

𝐌⋅𝒂( ;𝑡)𝑘
𝒄𝒙

)

is the calculation for the average hubs.
The numerator performs matrix multiplication be-
tween the |𝑉 | × |𝑉 | adjacency matrix 𝐌 and the
|𝑉 |×1𝒂. The denominator is a |𝑉 |×1 counted vector
𝒄𝒙 generated in Step 3. To calculate this in Python,
we simply apply numpy.matmul(𝐌, 𝒂( ; 𝑡)𝑘)/𝒄𝒙.

After computing 𝒂 and 𝒉 at 𝑘th iteration, we apply L2
normalization to both 𝒂 and 𝒉. We use the obtained 𝒂( ; 𝑡)
after the final iteration to construct the || × | | Expert-
Topic matrix (RETopM) where each entry contains the
reinforced weight of 𝑥 given 𝑡.
3

H. Du and Y.-B. Kang Software Impacts 8 (2021) 100069

y
t

Table 1
The document dataset  used in the example: extracted phrases are highlighted in
ellow, and extracted tokens are in bold. (For reference to colour, the reader is referred
o the web version of this article.)

3. Illustrative examples

In this section, we illustrate how ExpFinder works. The input data1

includes three experts (i.e., 𝑥1, 𝑥2 and 𝑥3) and three documents (i.e., 𝑑1,
𝑑2 and 𝑑3) as shown in Table 1. Fig. 4 presents the output examples of
the steps in ExpFinder:

1. Step 1 - Extract tokens and topics: Given , we extract tokens
 and topics  . In this step, we set a maximum length of
phrase to be 3 such that we only obtain phrases that have less
than or equal to 3 tokens. Additionally, we use the linguistic
pattern presented in Section 2. The output of this step contains
the set of 50 unique topics  and the set of 85 unique tokens
 . For example, extracted topics in 𝑑1 include some single-
token topics (e.g., prerequisite and capability) and
some multi-token topics (e.g., real-time nlp processing
and electronic health record).

2. Step 2 - Estimate the weights of experts and documents
given topics - Given  and  , we generate three main matrices
(i.e., 𝐄𝐃𝐌, 𝐃𝐓𝐨𝐩𝐌 and 𝐄𝐓𝐨𝐩𝐌) that will also be used in Step
4. To do this, we perform the following:

• Given  , we generate 𝐃𝐓𝐌3×85 where each entry shows
the TF of a token 𝑤 ∈  in a document 𝑑 ∈ . For ex-
ample, the 3 × 1 vector of healthcare, 𝐃𝐓𝐌∗,𝚑𝚎𝚊𝚕𝚝𝚑𝚌𝚊𝚛𝚎,
is (1, 0, 0) which shows it occurs only in 𝑑1 (see also  in
Table 1). As another example, we obtain 𝐃𝐓𝐌∗,𝚊𝚗𝚊𝚕𝚢𝚝𝚒𝚌𝚜 =
(2, 0, 0) which denotes that analytics appears twice in
𝑑1.

• Given  and 𝐃𝐓𝐌3×85, we generate 𝐃𝐏𝐌3×50 where each
entry contains the weight of a phrase 𝑡 ∈  for a document
calculated in 𝑛VSM. For example, suppose that health

1 The example data are also provided in our Github repository.

analytics is denoted as 𝑡1, we then calculate 𝑛TF of 𝑡1
in 𝑑1 as:

𝑛TF(𝑡1, 𝑑1) =
𝐃𝐓𝐌1,𝚑𝚎𝚊𝚕𝚝𝚑𝚌𝚊𝚛𝚎 + 𝐃𝐓𝐌1,𝚊𝚗𝚊𝚕𝚢𝚝𝚒𝚌𝚜

|𝑡1|
=

(1 + 2)
2

= 1.5

where |𝑡1| is a number of tokens in 𝑡1. Then, we calculate
the 𝑁-gram IDF of 𝑡1 as:

𝑛IDF(𝑡1) = log
|𝐷| ⋅ 𝑑𝑓 (𝑡1) + 1

𝑑𝑓 (𝐃𝐓𝐌∗,𝚑𝚎𝚊𝚕𝚝𝚑𝚌𝚊𝚛𝚎 ∧ 𝐃𝐓𝐌∗,𝚊𝚗𝚊𝚕𝚢𝚝𝚒𝚌𝚜)2 + 1
+ 1

= log 3 × 1 + 1
𝑑𝑓 ((1, 0, 0) ∧ (2, 0, 0))2 + 1

+ 1

= log 4
12 + 1

+ 1 = 1.693.

Here, ∧ is implemented in NumPy. Finally, we multiply
𝑛TF(𝑡1, 𝑑1) with 𝑛IDF(𝑡1) to obtain 𝑛TFIDF of 𝑑1 given 𝑡1
as: 𝐃𝐏𝐌1,𝑡1 = 𝑛TFIDF(𝑡1, 𝑑1) = 𝑛TF(𝑡1, 𝑑1) × 𝑛IDF(𝑡1) =
1.5 × 1.693 = 2.540.

• Given , we generate 𝐄𝐃𝐌3×3 where each entry shows the
authorship of an expert on a document. For example, 𝑥1 is
an author of 𝑑1, and hence, the entry between 𝑥1 and 𝑑1
(𝐄𝐃𝐌1,1) equals 1. Also, 𝐄𝐃𝐌1,3 = 0 shows that 𝑥1 is not
an author of 𝑑3 (See Table 1).

• Given 𝐄𝐃𝐌3×3 and 𝐃𝐏𝐌3×50, we generate 𝐄𝐓𝐨𝐩𝐌3×50

where each entry contains 𝑛TFIDF weight of an expert
given a topic. As we explained in Section 2, we assume
that 𝐃𝐓𝐨𝐩𝐌 = 𝐃𝐏𝐌. Now, we demonstrate the calculation
for the weights of experts  given 𝑡1 (𝐄𝐓𝐨𝐩𝐌∗,𝑡1) in 𝑛VSM
as:

𝐄𝐓𝐨𝐩𝐌∗,𝑡1 = 𝐄𝐃𝐌3×3 ⋅ 𝐃𝐓𝐨𝐩𝐌∗,𝑡1

=
⎡

⎢

⎢

⎣

1 1 0
1 0 1
0 1 0

⎤

⎥

⎥

⎦

⋅ (2.540, 0, 0) = (2.540, 2.540, 0)

Note that 𝐃𝐓𝐨𝐩𝐌3×3 and 𝐄𝐓𝐨𝐩𝐌3×3 are only used for the vi-
sualization purpose. We use 𝐃𝐓𝐨𝐩𝐌3×50 and 𝐄𝐓𝐨𝐩𝐌3×50 for the
estimation in Step 4.

3. Step 3 - Construct ECG: Given , we generate an ECG which
has three expert nodes and three document nodes, as shown in
Fig. 4. The graph is also used to generate 3 × 1 vectors (i.e., 𝒄𝒙
and 𝒄𝒅) that are used for the estimation of 𝜇CO-HITS in Step 4.
For example, 𝒄𝒅1 = 2 indicates there are two documents (i.e., 𝑑1
and 𝑑2) pointing to 𝑥1. Similarly, 𝒄𝒙3 = 1 indicates that there is
one expert (i.e., 𝑥2) who has authorship on 𝑑3.

4. Step 4 - Reinforce expert weights using 𝜇CO-HITS: We use
run_expfinder() in trainer.py to reinforce expert weights
given topics  . The function receives 𝐃𝐓𝐨𝐩𝐌3×50, 𝐄𝐓𝐨𝐩𝐌3×50,
ECG, 𝒄𝒙 and 𝒄𝒅 , generated in (Steps 2 and 3) as parameters,
and generate the 3 × 50 Expert-Topic matrix where each entry
shows the reinforced weight of an expert given a topic. Now, we
illustrate the estimation for the reinforced weight of  given 𝑡1
as:

• Given 6 nodes in an ECG, we generate the adjacency matrix
𝐌6×6 and its transpose matrix 𝐌⊤ as:

𝐌 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 1 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 1 0 0 1 0
0 0 0 0 0 0
0 0 1 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,𝐌⊤ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0 0 0 0
1 0 0 1 0 0
1 0 0 0 0 1
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

where rows and columns are labeled with the sequence 𝒔
(i.e., 𝒔 = (𝑑1, 𝑥1, 𝑥2, 𝑑2, 𝑥3, 𝑑3)).

• We apply L2 normalization for the 6 × 1 Expert-Topic (𝜶𝒙)

and the 6 × 1 Document-Topic (𝜶𝒅) vectors. The output

4

https://github.com/Yongbinkang/ExpFinder/tree/main/data
https://github.com/Yongbinkang/ExpFinder/tree/main/data
https://github.com/Yongbinkang/ExpFinder/tree/main/data
https://github.com/Yongbinkang/ExpFinder/tree/main/data
https://github.com/Yongbinkang/ExpFinder/tree/main/data
https://github.com/Yongbinkang/ExpFinder/tree/main/data
https://github.com/Yongbinkang/ExpFinder/tree/main/data
https://github.com/Yongbinkang/ExpFinder/tree/main/data
https://github.com/Yongbinkang/ExpFinder/tree/main/data
https://github.com/Yongbinkang/ExpFinder/tree/main/data
https://github.com/Yongbinkang/ExpFinder/tree/main/data
https://github.com/Yongbinkang/ExpFinder/tree/main/data
https://github.com/Yongbinkang/ExpFinder/tree/main/data
https://github.com/Yongbinkang/ExpFinder/tree/main/data
https://github.com/Yongbinkang/ExpFinder/tree/main/data
https://github.com/Yongbinkang/ExpFinder/tree/main/data
https://github.com/Yongbinkang/ExpFinder/tree/main/data
https://github.com/Yongbinkang/ExpFinder/tree/main/data
https://github.com/Yongbinkang/ExpFinder/tree/main/data

H. Du and Y.-B. Kang Software Impacts 8 (2021) 100069
Fig. 4. Illustrative examples for ExpFinder: the blue labels indicate module names of ExpFinder. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

of each vector is as:

𝜶𝒙 = 𝙻𝟸 − 𝚗𝚘𝚛𝚖𝚊𝚕𝚒𝚣𝚎(𝐄𝐓𝐨𝐩𝐌∗,𝑡1) = (0, 0.707, 0.707, 0, 0, 0)

𝜶𝒅 = 𝙻𝟸 − 𝚗𝚘𝚛𝚖𝚊𝚕𝚒𝚣𝚎(𝐃𝐓𝐨𝐩𝐌∗,𝑡1) = (1, 0, 0, 0, 0, 0)

• We reinforce expert weights given 𝑡1 in 5 iterations with
𝜆𝑥 = 1 and 𝜆𝑑 = 0.7. Here, we demonstrate the calculation
of average authorities 𝒂 and average hubs 𝒉 at the first
iteration (𝑘 = 1):

𝒂( ; 𝑡1)1 = (1 − 𝜆𝑥)𝒂( ; 𝑡1)0 + 𝜆𝑥

(𝐌⊤ ⋅ 𝒉(; 𝑡1)0

𝒄𝒅

)

= 0 ⋅ (0, 0.707, 0.707, 0, 0, 0) + 1.0 ⋅
(

(0, 2, 2, 0, 1, 0)
(2, 1, 1, 2, 1, 1)

)

= (0, 2, 2, 0, 1, 0)

𝒉(; 𝑡1)1 = (1 − 𝜆𝑑)𝒉(; 𝑡1)0 + 𝜆𝑑

(𝐌 ⋅ 𝒂( ; 𝑡1)1

𝒄𝒙

)

= 0.3 ⋅ (1, 0, 0, 0, 0, 0) + 0.7 ⋅
(

(4, 0, 0, 3, 0, 2)
(1, 2, 2, 1, 1, 1)

)

= (3.1, 0, 0, 2.1, 0, 1.4)

where 𝒂( ; 𝑡1)1 and 𝒉(; 𝑡1)1 are 6 × 1 vectors. At the end
of the iteration, we normalize these vectors by applying the
L2 normalization technique as:

𝒂( ; 𝑡1)1 = 𝙻𝟸 − 𝚗𝚘𝚛𝚖𝚊𝚕𝚒𝚣𝚎(𝒂( ; 𝑡1)1)

= (0, 0.667, 0.667, 0, 0.333, 0)

𝒉(; 𝑡1)1 = 𝙻𝟸 − 𝚗𝚘𝚛𝚖𝚊𝚕𝚒𝚣𝚎(𝒉(; 𝑡1)1)

= (0.776, 0, 0, 0.525, 0, 0.35)

After 5 iterations, we obtain 𝒂( ; 𝑡1)5 = (0, 0.577, 0.595, 0,
0.56, 0) whose labels are presented by 𝒔, and hence, we
use 𝑥1, 𝑥2 and 𝑥3 as indexes for obtaining a 3 × 1 vector
(i.e., 𝐑𝐄𝐓𝐨𝐩𝐌∗,𝑡1 = (0.577, 0.595, 0.56)).

The output is 𝐑𝐄𝐓𝐨𝐩𝐌3×50. If we use 𝑡1 and the other two topics
(i.e., natural language processing and vision technology,

denoted as 𝑡2 and 𝑡3, respectively), we can generate 𝐑𝐄𝐓𝐨𝐩𝐌3×3

in Fig. 4. This matrix can be used for two major tasks (1) finding
the most expertise query for each expert (also known as expert
profiling); and (2) finding the best expert for a given query (also
known as expert finding).

4. Impact and conclusion

With the growth of expertise digital sources, expert finding is a
crucial task that has significantly helped people to seek the services and
guidance of an expert [12]. ExpFinder is an ensemble model for expert
finding that integrates 𝑛VSM with 𝜇CO-HITS to enhance the capability
for expert finding over existing DLM, VSM and GM approaches. To
our best knowledge, ExpFinder is the first attempt to provide the
implementation of 𝑛VSM and 𝜇CO-HITS for expert finding.

The implementation of ExpFinder also provides functionalities that
can be potentially useful for implementing other expert finding models.
For example, our tokenisation module for extracting noun phrases
using a linguistic pattern based on a part of speech (POS) can be
easily customized based on researchers’ purposes. The modules for
building the presented Expert-Document matrix (EDM), Expert-Topic
matrix (ETopM), and Document-Topic matrix (DTopM) can be usefully
leveraged to represent relationships between experts and documents,
experts and topics, and documents and topics. These relationships can
be used to represent a collective information among experts, documents
and topics and used to implement other graph-based expert finding
models such as an author–document-topic (ADT) graph [7] and an
expert–expert graph via topics.

We highlight that ExpFinder is a state-of-the-art model, substantially
outperforming the following widely known and latest models for expert
finding: document language model [3], probabilistic-based expert finding
model [5], graph-based models [6–8]. Thus, the ones who want to extend
ExpFinder can harness our implementation for further improvement of
ExpFinder.

We presented the architecture and implementation detail of
ExpFinder with an illustrative example. This would help researchers
and practitioners to better understand how ExpFinder is designed and

implemented with its core functionalities.

5

H. Du and Y.-B. Kang Software Impacts 8 (2021) 100069
Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

References

[1] F. Riahi, Z. Zolaktaf, M. Shafiei, E. Milios, Finding expert users in community
question answering, in: Proceedings of the 21st International Conference on
World Wide Web, 2012, pp. 791–798.

[2] C.T. Chuang, K.H. Yang, Y.L. Lin, J.H. Wang, Combining query terms extension
and weight correlative for expert finding, in: 2014 IEEE/WIC/ACM International
Joint Conferences on Web Intelligence (WI) and Intelligent Agent Technologies
(IAT), Vol. 1, IEEE, 2014, pp. 323–326.

[3] K. Balog, L. Azzopardi, M. de Rijke, A language modeling framework for expert
finding, Inf. Process. Manage. 45 (1) (2009) 1–19.

[4] B. Wang, X. Chen, H. Mamitsuka, S. Zhu, BMExpert Mining MEDLINE for finding
experts in biomedical domains based on language model, IEEE/ACM Trans.
Comput. Biol. Bioinform. 12 (6) (2015) 1286–1294.

[5] P. Cifariello, P. Ferragina, M. Ponza, WISER: A semantic approach for expert
finding in academia based on entity linking, Inf. Syst. 82 (2019) 1–16.

[6] H. Deng, M.R. Lyu, I. King, A generalized CO-HITS algorithm and its application
to bipartite graphs, in: Proceedings of the 15th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, 2009, pp. 239–248.

[7] S.D. Gollapalli, P. Mitra, C.L. Giles, Ranking experts using author-document-topic
graphs, in: Proceedings of the 13th ACM/IEEE-CS Joint Conference on Digital
Libraries, JCDL ’13, 2013, pp. 87–96.

[8] D. Schall, A Social Network-Based Recommender Systems, Springer, 2015.
[9] Y.-B. Kang, H. Du, A.R.M. Forkan, P.P. Jayaraman, A. Aryani, T. Sellis,

ExpFinder: An ensemble expert finding model integrating 𝑁-gram vector space
model and 𝜇CO-HITS, 2021, arXiv:2101.06821.

[10] M. Shirakawa, T. Hara, S. Nishio, IDF for word N-grams, ACM Trans. Inf. Syst.
36 (1) (2017).

[11] J.M. Kleinberg, Authoritative sources in a hyperlinked environment, J. ACM 46
(5) (1999) 604–632.

[12] R. Gonçalves, C.F. Dorneles, Automated expertise retrieval: A taxonomy-based
survey and open issues, ACM Comput. Surv. 52 (5) (2019) 1–30.
6

http://refhub.elsevier.com/S2665-9638(21)00017-8/sb2
http://refhub.elsevier.com/S2665-9638(21)00017-8/sb2
http://refhub.elsevier.com/S2665-9638(21)00017-8/sb2
http://refhub.elsevier.com/S2665-9638(21)00017-8/sb2
http://refhub.elsevier.com/S2665-9638(21)00017-8/sb2
http://refhub.elsevier.com/S2665-9638(21)00017-8/sb2
http://refhub.elsevier.com/S2665-9638(21)00017-8/sb2
http://refhub.elsevier.com/S2665-9638(21)00017-8/sb3
http://refhub.elsevier.com/S2665-9638(21)00017-8/sb3
http://refhub.elsevier.com/S2665-9638(21)00017-8/sb3
http://refhub.elsevier.com/S2665-9638(21)00017-8/sb4
http://refhub.elsevier.com/S2665-9638(21)00017-8/sb4
http://refhub.elsevier.com/S2665-9638(21)00017-8/sb4
http://refhub.elsevier.com/S2665-9638(21)00017-8/sb4
http://refhub.elsevier.com/S2665-9638(21)00017-8/sb4
http://refhub.elsevier.com/S2665-9638(21)00017-8/sb5
http://refhub.elsevier.com/S2665-9638(21)00017-8/sb5
http://refhub.elsevier.com/S2665-9638(21)00017-8/sb5
http://refhub.elsevier.com/S2665-9638(21)00017-8/sb8
http://arxiv.org/abs/2101.06821
http://arxiv.org/abs/2101.06821
http://arxiv.org/abs/2101.06821
http://arxiv.org/abs/2101.06821
http://arxiv.org/abs/2101.06821
http://arxiv.org/abs/2101.06821
http://arxiv.org/abs/2101.06821
http://arxiv.org/abs/2101.06821
http://arxiv.org/abs/2101.06821
http://arxiv.org/abs/2101.06821
http://arxiv.org/abs/2101.06821
http://arxiv.org/abs/2101.06821
http://arxiv.org/abs/2101.06821
http://arxiv.org/abs/2101.06821
http://arxiv.org/abs/2101.06821
http://arxiv.org/abs/2101.06821
http://refhub.elsevier.com/S2665-9638(21)00017-8/sb10
http://refhub.elsevier.com/S2665-9638(21)00017-8/sb10
http://refhub.elsevier.com/S2665-9638(21)00017-8/sb10
http://refhub.elsevier.com/S2665-9638(21)00017-8/sb11
http://refhub.elsevier.com/S2665-9638(21)00017-8/sb11
http://refhub.elsevier.com/S2665-9638(21)00017-8/sb11
http://refhub.elsevier.com/S2665-9638(21)00017-8/sb12
http://refhub.elsevier.com/S2665-9638(21)00017-8/sb12
http://refhub.elsevier.com/S2665-9638(21)00017-8/sb12

	An open-source framework for ExpFinder integrating N-gram vector space model and CO-HITS
	Introduction
	Functionality
	Illustrative examples
	Impact and conclusion
	Declaration of competing interest
	References

