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Abstract. Retrieval is often considered the most important phase in
Case-Based Reasoning (CBR), since it lays the foundation for overall
performance of CBR systems. Retrieval in CBR aims to retrieve relevant
cases that can be successfully used for solving a new problem. To realize
retrieval, CBR systems typically rely on a strategy that exploits similar-
ity knowledge, and it is called similarity-based retrieval (SBR). In SBR,
similarity knowledge approximates the usefulness of cases for solving a
new problem. In this paper, we show that association analysis of stored
cases can be used to strengthen SBR. We present a new approach for
extracting and representing association knowledge from the cases using
association rule mining. We propose a novel retrieval strategy USIM-
SCAR that qualitatively enhances SBR by leveraging both similarity
and association knowledge. We demonstrate the significant advantages
of using USIMSCAR over SBR through an experimental evaluation using
medical datasets.

1 Introduction

Case-Based Reasoning (CBR) [1] is a widely researched technology for problem-
solving in many application domains such as medical diagnosis [2], help-desk
service [3], product recommendation [4], and classification [5]. The fundamental
premise of CBR is that experience in the form of past cases can be leveraged to
solve new problems. It is based on the fact that in many application domains,
similar problems usually have similar solutions. In CBR, experiences are stored
in a database known as a case base, and an individual experience is called a case.

Typically, there are four well-organized phases adopted in CBR [1]. The first
phase is to retrieve one or several cases considered useful for solving a given
target problem. Once useful cases are retrieved, the second phase is to reuse
their solution information. The third phase is to revise or adapt the solution
information to better fit the target problem if necessary. The fourth phase is to
retain the new solution once it has been confirmed or validated.

Retrieval is often considered the most important phase in CBR, since it lays
the foundation for overall performance of CBR systems [6]. Its aim is to retrieve
useful cases that can be successfully used to solve a new problem. If retrieved
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cases are not useful, CBR systems will not eventually produce any good solution
for the new problem.

To accomplish the retrieval process, CBR systems typically rely on a re-
trieval strategy that exploits similarity knowledge. This strategy is often called
similarity-based retrieval (SBR) [7]. In SBR, similarity knowledge aims to ap-
proximate the usefulness of stored cases as to solving a new problem [8]. This
knowledge is usually encoded in the form of similarity measures, which are used
to compute similarities between a new problem and the cases. By using simi-
larity measures, SBR retrieves useful cases ranked by their similarities to the
new problem. The solutions of these cases are then utilized to solve the problem.
A limitation of SBR is that it tends to rely strongly on similarity knowledge
only, ignoring other available knowledge that can be additionally leveraged for
improving its retrieval performance [7,9,8].

While many kinds of learnt and induced knowledge (e.g. statistical [10], do-
main [8,11], adaptation [7,12] knowledge) have been utilized to enhance SBR, this
paper proposes that association analysis of stored cases can improve traditional
SBR. We propose a new retrieval strategy USIMSCAR that leverages associa-
tion knowledge in conjunction with similarity knowledge. Association knowledge
is formalized to represent certain interesting relationships, shared by a large
number of cases, acquired from stored cases using association rule mining. The
key idea of USIMSCAR thus lies in its usage of both similarity and association
knowledge to deliver an improved retrieval strategy for CBR. We show USIM-
SCAR improves SBR through an experimental evaluation using medical datasets
found in UCI ML Repository.

This paper is organized as follows. In Section 2, we present the motivation
of our work. In Section 3, we present a background of similarity knowledge
and association knowledge. In Section 4, we present our approach for formaliz-
ing association knowledge. In Section 5, we present USIMSCAR that leverages
similarity and association knowledge. In Section 6, we evaluate USIMSCAR in
comparison with SBR. In Section 7, we review the literature work related to this
paper. In Section 8, we present our conclusion and future research directions.

2 Motivating Scenario

To illustrate our research motivation, we use a medical diagnosis scenario pre-
sented in [13]. Consider a case base D in Table 1, where each case is represented
as a pair of a problem and the corresponding solution. Each problem is described
by five attributes (symptoms) A1, ..., A5, and each solution by an attribute (a
diagnosis) A6. Our aim is to diagnose the correct disease ‘appendicitis’ for a new
patient Q, since Q really suffered from ‘appendicitis’ as noted in [13].

To predict a diagnosis for Q, in principle, SBR may find similar cases to Q
using a similarity metric. Assume that we use the following metric, used in [13],
that measures the similarity between Q and each case P ∈ D,
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Table 1. A patient case base

Cases ID
Local Pain Other Pain Fever Appetite Loss Age Diagnosis Similarity

(A1) (A2) (A3) (A4) (A5) (A6) to Q

P1 right flank vomit 38.6 yes 10 appendicitis 0.631
P2 right flank vomit 38.7 yes 11 appendicitis 0.623
P3 right flank vomit 38.8 yes 13 appendicitis 0.618
P4 right flank sickness 37.5 yes 35 gastritis 0.637
P5 epigastrium nausea 36.8 no 20 stitch 0.420
Q right flank nausea 37.8 yes 14 ?

Weight 0.91 0.78 0.60 0.40 0.20

SIM(Q, P ) =
∑n

i=1 wi · sim(qi, pi)∑n
i=1 wi

,

sim(qi, pi) =

⎧
⎪⎨

⎪⎩

1 − |qi−pi|
Amax

i −Amin
i

, if Ai is numeric,

1, if Ai is discrete & qi = pi,

0, otherwise,

(1)

where wi is a weight assigned to an attribute Ai of Q and P by domain experts,
qi and pi are values of Ai, n is the number of attributes of Q and P (i.e. n = 5),
and sim(qi, pi) is a function computing the similarity between qi and pi.

Once cases similar to Q are selected using the metric SIM , SBR determines a
diagnosis for Q. Assume that SBR utilizes the most similar case to Q. As seen in
Table 1, P4 is thus chosen, since it is the most similar case to Q. This means that
a diagnosis choice for Q is ‘gastritis’. However, it turns out to be wrong, since
Q actually suffered from ‘appendicitis’, as outlined above. This scenario shows
that SBR has a limitation rooted in its nature−its ability tends to be strongly
determined by the use of only similarity knowledge.

To address this issue, our idea is to formalize special knowledge, called as-
sociation knowledge, that indicates how certain known problems are strongly
associated with certain known solutions in a case base, and to exploit it during
the retrieval process in CBR. For example, in Table 1, we observe that the values
of A5 (Age) of three cases P1, P2, and P3 are quite similar, which range from 10
to 13. These values are associated with ‘appendicitis’. Whereas the value of A5

of P4 is 35, and it is associated with ‘gastritis’. We note that the former associa-
tion is supported by three cases, while the latter by only one case. If we quantify
such associations, it may be usefully exploited in conjunction with similarity
knowledge for solving the target problem. For example, assume that each of the
above associations is quantified as the proportion of the cases that support it.
The former association (as1) is then quantified as 0.6 (3/5), and the latter (as2)
as 0.2 (1/5). In Table 1, we see that SIM(Q, P4) is 0.637, and SIM(Q, P1) is
0.631. We now measure the usefulness of each case with respect to Q by com-
bining its similarity to Q and the quantified value of the association that the
case supports. Suppose that the combination is implemented via the arithmetic
multiplication operation. Then, we measure the usefulness of P4 as 0.127 by
SIM(Q, P4)×as2, and that of P1 as 0.379 by SIM(Q, P1)×as1. Regarding the
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computed usefulness, the higher the better. We thus conclude that P1 is more
useful than P4 so that P1’s diagnosis ‘appendicitis’ can be used as a diagnosis
for Q. This meets our objective of this scenario. This paper presents how to
extract and represent association knowledge as well as exploit this knowledge in
conjunction with similarity knowledge in order to qualitatively enhance SBR.

3 Background to Research on Similarity and Association
Knowledge

Prior to presenting the underpinnings of our proposed retrieval strategy, it is es-
sential to provide a background of similarity and association knowledge. This sec-
tion provides this background. We first present our case representation scheme,
which is the basis for formalizing both similarity and association knowledge.

To represent cases, many CBR systems generally adopt well-known knowledge
representation formalisms, such as attribute-value pairs and structural represen-
tations [14]. In our work, we choose the attribute-value pairs representation due
to its simplicity, flexibility and popularity. Let A1, ..., Am be attributes defined
in a given domain. An attribute-value pair is a pair (Ai, ai), where Ai is an at-
tribute (or feature1) and ai is a value of Ai∈[1,m]. A case C is a pair C = (X, Y )
where X is a problem, represented as X = {(A1, a1), ..., (Am−1, am−1)}, and Y
is the solution of X , represented as Y = (Am, am). We call an attribute Am a
solution-attribute. A case base D is a collection of cases.

3.1 Background to Research on Similarity Knowledge

Similarity knowledge is referred to as knowledge encoded via similarity measures
computing the similarities between a new problem Q and stored cases. SBR
mainly exploits this knowledge. Similarity knowledge represents a heuristic for
estimating the usefulness of stored cases as to solving Q. Intuitively, the higher
the similarity between Q and the case C is, the more useful C is as to solving Q.
A formulation of similarity measures suitable for cases represented by attribute-
value pairs is often based on a widely used principle. This is the local-global
principle that decomposes a similarity measure by local similarities for individual
attributes of the cases and a global similarity aggregating the local similarities [8].
An accurate local similarity function relies on attribute types. A global similarity
function can be arbitrarily complex, but simple functions are usually used. A
widely used form is weighted average aggregation [8] (e.g. SIM in Eq. 1).

3.2 Background to Research on Association Knowledge

We now present the fundamentals of association knowledge in a CBR context.
These are association rule mining [15], class association rule mining [16], and
the soft-matching criterion [17].
1 To simplify the presentation, we do not distinguish between terms “attributes” and

“features”, and use these terms interchangeably.
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Association rule mining [15] aims to mine certain interesting relationships,
called associations, in a transaction database. It focuses on discovering a set of
highly correlated features shared a large number of transactions in the database.
Let I be a set of distinct literals, called items. A set of items X ⊆ I is called an
itemset. Let D be a set of transactions. Each transaction T ∈ D is a set of items
such that T ⊆ I. We say that T contains an itemset X , if X ⊆ T holds. Every
association rule has two parts: an antecedent and a consequent. An association
rule is an implication of the form X → Y , where X ⊆ I is an itemset in the
antecedent and Y ⊆ I is an itemset in the consequent, and X ∩ Y = ∅. The rule
X → Y has support s in D if s% of transactions in D contain X ∪Y . This holds
in D with confidence c if c% of transactions in D that contain X also contain Y .
Association rule mining can also be used for discovering interesting relationships
among stored cases. In a CBR context, a transaction is seen as a case, and an
item is seen as an attribute-value pair. Referring to Table 1, we can mine a rule
r1 : (A1, right flank) → (A2, vomit). Let X be an item (A1, right flank). Let Y
be an item (A2, vomit). The support of r1 is 0.6, since X and Y occur together
in three out of five cases in D. The confidence of r1 is 0.75, since Y occurs in
three out of four cases that contain X in D. Apriori [15] is one of the traditional
algorithms for association rule mining.

Consider a special subset of association rules whose consequents are restricted
to a single target variable. Rules in this subset are called class association rules
(cars) [16]. In a CBR context, cars can be seen as special association rules whose
consequents are restricted to hold special items, formed as pairs of a “solution-
attribute” (see earlier in this section) and its values. We call such an item a
solution-item. Thus, a car has the form X → y, where X ⊆ I an itemset in the
antecedent and y ∈ I is a solution-item in the consequent. In Table 1, we can mine
a car: r2 : (A2, vomit) → (A6, appendicitis). But the above rule r1 is not a car,
since r1 does not contain any solution-item in the consequent. We here emphasize
that the aim of building association knowledge is to formalize special knowledge
encoding how certain attribute-value pairs of known problems are associated
with known solutions in a case base. For the purpose, we will use the form of
cars, since it is suited well for it. Note that the car X → y encodes an association
between an itemset X , holding attribute-value pairs of known problems, and a
solution-item y holding an attribute-value pair of a known solution.

Consider the association rule X → Y . A limitation of traditional association
rule mining algorithms (e.g. Apriori [15]) is that itemsets X and Y are discovered
based on the equality relation. Unfortunately, when dealing with items similar
to each other, these algorithms may perform poorly. For example, consider the
sales database of a supermarket. Apriori cannot find rules like “80% of the
customers who buy products similar to milk (e.g. cheese) and products similar
to eggs (e.g, mayonnaise) also buy bread.” To address this issue, the SoftApriori
algorithm [17] was proposed. It uses the soft-matching criterion, where itemsets
in the antecedent and the consequent are found using similarity assessment. By
employing the concept of similarity, the soft-matching criterion can be used to
model richer relationships among features of cases than the equality relation [17].
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4 Association Knowledge Formalization

Association knowledge is encoded via special rules that are “cars” whose an-
tecedents are determined based on the “soft-matching criterion”. We call these
rules soft-matching class association rules (scars). A scar represents a strongly
evident correlation, between certain attribute-value pairs of known problems and
a known solution shared by a significant number of relevant cases.

LetD be a set of cases, where each case is characterized by attributes A1, ..., Am.
Based on our case representation scheme, presented in Section 3, we call a pair
(Ai, ai)1≤i≤m−1 an item. We call a pair (Am, am) a solution-item. Let I be a set
of items. A set L ⊆ I with k = |L| is called a k-itemset or simply an itemset. Let
sim(x, y) be a function computing the similarity between two items x, y ∈ I. We
say that x and y are similar, iff sim(x, y) ≥ a user-specified minimum similarity
(minsim). Let x be an item (A2, 38.6). Let y be an item (A2, 38.7). Assuming
a similarity function for an attribute A2 is defined as sim(x, y) = 1 − |x−y|

40 ,
sim(x, y) is 0.998. Given two itemsets X, Y ⊆ I (|X | ≤ |Y |), softSuppR(X, Y )
is a function defined as

∑ sim(x,y)
|X| , where x ∈ X and y ∈ Y are two items charac-

terized by the same attribute. We say that X is a soft-subset of Y (X ⊆soft Y ),
iff softSuppR(X, Y ) ≥ minsim; or Y softly contains X . The problem described
in each case C ∈ D is also seen as a k-itemset with k = |m − 1|, since it is rep-
resented as {(A1, a1), ..., (Am−1, am−1)}. The soft-support-sum of an itemset X
regarding D is defined as softSuppSum(X) =

∑
C∈D softSuppR(X, C), where

X ⊆soft C. The soft-support of X is defined as softSupp(X) = softSuppSum(X)
|D| .

The soft-support for a scar X → y is defined as the fraction of cases in D that
softly contain an itemset X and contain a solution-item y. The soft-confidence
of this rule is defined as the fraction of cases in D that softly contain X also
contain y. In this paper, a ruleitem is of the form 〈X, y〉 and basically represents
a scar X → y.

The key operation for scars mining is to find all ruleitems that have soft-
supports ≥ minsupp (a user-specified minimum support). We call such ruleitems
frequent ruleitems. For all the ruleitems that have the same itemset in the an-
tecedent, one with the highest interestingness is chosen as a possible rule (PR).
To measure the interestingness of association rules, the support and confidence
criteria are typically used. On some occasions, a combination of them is used.
Often, a rationale for doing so is to define a single optimal interestingness by
leveraging their correlations. We choose an interestingness measure that com-
bines soft-support and soft-confidence such that they are monotonically related.
We thus choose the Laplace measure [18]. Given a ruleitem r : X → y, its Laplace
measure Laplace(r) can be denoted as N ·softSupp(X→y)+1

N ·softSupp(X→y)/softConf(X→y)+2 , where
N = |D|. If Laplace(r) ≥ a user-specified minimum level of interesting (min-
interesting), we say r is accurate. A candidate set of scars consists of all the PRs
that are frequent and accurate.

Let k-ruleitem be a ruleitem whose antecedent has k items. Let Fk be a
set of frequent k-ruleitems. In Fk, each ruleitem r: X → y has two fields:
r.anteSoftSuppSum storing soft-support-sum of ruleitems in D that softly
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1: F1 = findFrequentRuleItems(D);
2: SCAR1 = genRules(F1);
3: k = 2;
4: while Fk−1 �= ∅ do
5: CRk = generateCandidatesRuleItems(Fk−1);
6: for each case C ∈ D do
7: for each r : X → y ∈ CRk do
8: if r ⊆soft C then
9: r.anteSoftSuppSum += softSuppR(X,C);

10: if y = C.solution then
11: r.softSuppSum += softSuppR(X,C);
12: end if
13: end if
14: end for
15: end for
16: Fk = {r ∈ CRk |softSupp(r)| ≥ minsupp};
17: SCARk = genRules(Fk);
18: k++;
19: end while
20: SCARS =

⋃
k≥minitemsize SCARk;

21: prSCARS = pruneRules(SCARS);
22: Return prSCARS;

Algorithm 1. The algorithm for scars mining

contain X , and r.softSuppSum storing the soft-support-sum of ruleitems in
D that softly contain X and also contain y. Thus, softSupp(r) = r.softSuppSum

|D|
and softConf(r) = r.softSuppSum

r.anteSoftSuppSum .
Algorithm 1 is the algorithm for scars mining: (1) For 1-ruleitems X ⊆ I,

we find F1 as F1 = {{X}|softSupp(X) ≥ minsupp}. A set SCAR1 is then
generated by only choosing PRs from F1 (lines 1 - 2). (2) For each k subsequent
pass, we find a set of new possibly frequent ruleitems CRk using Fk−1 found in
the (k − 1)th pass. We then scan D, and updates the anteSoftSuppSum and
softSuppSum of ruleitems in CRk. We then generate a new Fk by extracting
ruleitems in CRk whose soft-support ≥ minsupp. A set SCARk is generated
by only choosing PRs from Fk (lines 3 - 19). (3) From SCAR1, ..., SCARk,
we choose only sets whose i ∈ [1, k] ≥ minitemsize (a user-specified minimum
ruleitem size), and store them in a set SCARS. Our idea is to choose a small
representative subset of frequent ruleitems from the large number of resulting
frequent ruleitems. The longer the frequent ruleitem, the more significant it is,
driven from the studies [19]. We perform a rule pruning on ruleitems in SCARS.
A rule r is pruned, if Laplace(r) < min-interesting. The set of ruleitems after
the pruning is stored in a set prSCARS and returned (lines 20 - 22).

5 A Unique Retrieval Strategy: USIMSCAR

Given a new problem Q, the goal of our novel retrieval strategy USIMSCAR is
to generate a retrieval result RR. RR consists of potentially useful objects that
can be used to solve Q by leveraging both similarity and association knowledge.
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Such objects are obtained from both stored cases and scars mined. Let D be a
set of cases. Let prSCARS be the set of scars mined from D. We below present
the USIMSCAR algorithm:

1: RC = retrieveSimilarCases(Q, D);
2: RS = retrieveSimilarScars(Q, RC, prSCARS);
3: for each case C ∈ RC do
4: rC = getBestSCAR(C, prSCARS);
5: if rC �= ∅ then
6: USF (C, Q) = SIM(C, Q) · Laplace(rC);
7: else
8: USF (C, Q) = SIM(C, Q) · min-interesting;
9: end if

10: object = createObject(C, USF (C, Q));
11: RR = RR

⋃
object;

12: end for
13: for each scar r ∈ RS do
14: USF (r, Q) = SIM(r,Q) · Laplace(r);
15: object = createObject(r, USF (r,Q));
16: RR = RR

⋃
object;

17: end for
18: RR = enhanceObjects(RR);
19: Return RR;

Algorithm 2. The USIMSCAR algorithm

(1) In D, we find the k most similar cases RC to Q (line 1). We denote SIM(C, Q)
as the similarity between a case C ∈ D and Q.
(2) In prSCARS, we find the k most similar scars RS to Q (line 2). A ques-
tion raised is how to define a function SIM(r, Q) that computes the similarity
between a scar r and Q. Our answer to it lies in our choice of the “cars rep-
resentation” for scars mining. Note that scars have the identical structure as
cases−the antecedents and consequents of scars correspond to the problem and
solution part of cases respectively. Thus, SIM(r, Q) can be defined in the same
way as SIM(C, Q), where C is a case in D. To generate RS, we only consider the
scars in prSCARS such that their itemsets in the antecedents are “soft-subsets”
of cases in RC, rather than scanning all scars in prSCARS for efficiency. We
denote such rules as RCS. Note that each case C ∈ RC is chosen as a similar
case to Q (C ∼ Q). Assuming each scar r ∈ RCS has the form r : X → y, X is
a soft-subset of C (X ⊆soft C). Since C ∼ Q and X ⊆soft C, X ⊆soft C ∼ Q
can be derived. It implies that RCS is the collection that is a particular subset
(i.e. soft-subset) of cases in RC similar to Q.
(3) For each case C ∈ RC, we select a special scar rC ∈ prSCARS (line 4). A
rule r ∈ prSCARS is chosen as rC , if it has the highest interestingness (i.e. the
Laplace measure) among those scars in prSCARS such that their itemsets in
the antecedents are “soft-subsets” of C and their solutions in the consequents
are “equal” to the solution of C. We then compute the usefulness of C re-
garding Q (USF (C, Q)) by combining SIM(C, Q) and Laplace(rC) using the
multiplication operation. If candidate(s) for rC is chosen more than one, let
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us say m, we use the average of the interestingness of these m scars to com-
pute Laplace(rC). If there is no candidate for rC , we use min-interesting for
Laplace(rC). Note that in SBR, the usefulness of C regarding Q is generally
measured by SIM(C, Q). In contrast, our combination schemes aim to enhance
such usefulness by leveraging SIM(C, Q) and Laplace(rC). We then cast C to
a generic object O that can encapsulate any cases and scars. O has two fields:
O.inst = C; O.usf = USF (C, Q). O is added to a retrieval result RR (lines 4 -
11);
(4) For each scar r ∈ RS, we compute the usefulness of r regarding Q (USF (r, Q))
by combining SIM(r, Q) and Laplace(rC) using the multiplication operator. This
aims to directly leverage each scar in RS whose interestingness is high with re-
spect to Q. For each scar r ∈ RS, we cast r to a generic object O. O has two
fields: O.inst = r; O.usf = USF (r, Q). O is added to RR (lines 13 - 17).
(5) We further enhance the usefulness of each object in RR (line 18). This is
achieved based on the solution occurrence of objects in RR. Our premise is that
if the solution of an object O is more frequent in RR, O is more useful in RR. The
solution of each object O ∈ RR is differently interpreted, according to whether
O was cast from a case C or a scar r. If created from C, its solution indicates the
solution of C; if created from r, its solution means the solution in the consequent
of r. Let S be a set of solutions of objects in RR. Let SO be a set of objects in
RR that have the solution equal to the solution of an object O ∈ RR. For each
object O ∈ RR, we compute δ(SO) as δ(SO) = |SO|/|RR| Finally, we enhance
O.usf by multiplying δ(SO). Each object O ∈ RR, with its usefulness regarding
Q (O.usf), will be utilized to induce a solution for Q.

We now illustrate how USIMSCAR performs with the case base D shown in
Table 1, already used in Section 2, and how a solution is induced from RR. From
D, assume that we generate the following scars shown in Table 2.

Table 2. The scars generated

Rules Laplace Soft-subset of

r1: {(A1,right flank),(A2,vomit),(A3,38.6),(A4,yes),(A5,13)} → (A6,appendicitis) 0.922 P1, P2, P3

r2: {(A1,right flank),(A2,vomit),(A3,38.7),(A4,yes),(A5,10)} → (A6,appendicitis) 0.922 P1, P2, P3

r3: {(A1,right flank),(A2,vomit),(A3,38.8),(A4,yes),(A5,10)} → (A6,appendicitis) 0.922 P1, P2, P3

r4: {(A1,right flank),(A2,sickness),(A3,37.5),(A4 ,yes),(A5,35)} → (A6,gastritis) 0.775 P4

USIMSCAR takes the following steps (assume k=2 for steps (1) and (2)): (1)
Retrieve the 2 most similar cases to Q: RC = {P4, P1} with SIM(P4, Q) = 0.637,
SIM(P1, Q) = 0.631. (2) Retrieve the 2 most similar scars to Q: RS = {r1, r4}
with SIM(r1, Q) = 0.640, SIM(r4, Q) = 0.637. (3) For each case C ∈ RC, rC

is determined. For P4, r4 is selected. For P1, r1, r2 and r3 are selected. Thus,
USF (P4, Q) = 0.494, USF (P1, Q) = 0.581. Then, P4 with USF (P4, Q) and P1

with USF (P1, Q) are cast to new generic objects, and stored in RR. (4) For
each scar r ∈ RS, its usefulness regarding Q is computed: USF (r1, Q) = 0.594,
USF (r4, Q) = 0.496. Then, r1 with USF (r1, Q) and r4 with USF (r4, Q) are
cast to new generic objects, and stored in RR. (5) Assume that each object in
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RR has a field s holding its solution. RR has four objects RR = {O1, ..., O4}
(see Table 3). As observed, there are only two sets of objects regarding solutions.
For each object O ∈ RR, O.usf is enhanced by weighting δ(SO) = |SO|/|RR|.
The enhancement results are shown under the column ‘final usefulness’ in the
table. Finally, if we choose the most useful one with respect to Q, O3 is chosen.
Its solution ‘appendicitis’, Q really had, is thus used as a diagnosis for Q.

Table 3. The retrieval result RR

field: inst field: usf field: solution final usefulness

O1.inst = P4, O1.usf = 0.494, O1.s = gastritis 0.247
O2.inst = P1, O2.usf = 0.581, O2.s = appendicitis 0.291
O3.inst = r1, O3.usf = 0.594, O3.s = appendicitis 0.297
O4.inst = r4, O4.usf = 0.496, O4.s = gastritis 0.248

6 Evaluation

Our evaluation goal is to empirically show that USIMSCAR can improve SBR
regarding retrieval performance. As a target application task, we choose a task
highly dependent on the retrieval performance in CBR. One suitable task is
to solve classification problems on the basis of the case-based approach. The
case-based approach for classification is defined as follows [20]: given a new
problem Q, its goal is to retrieve a set of similar cases to Q from a case base,
and classify Q based on the retrieved cases. Thus, in principle, this approach
is strongly dependent on the result obtained through retrieval in CBR. Based
on this evaluation approach, we apply USIMSCAR and SBR in predicting an
appropriate diagnosis for a new patient through information of patients whose
diagnosis is already known with medical datasets found in UCI ML Repository2.

6.1 Experimental Setup

SBR is typically realized through the approach using a derivative of the nearest
neighbor algorithm [6]. This approach is called k-nearest neighborhood retrieval
or simply k-NN. The idea of k-NN is that to solve a new problem Q, useful cases
are determined using the k most similar cases to Q. For our comparison pur-
poses, we choose the following k-NN based approaches available in Weka [21]: (1)
IBk is a simple implementation of k-NN, and relies on the Euclidean distance to
find the k most similar cases to Q; (2) IBkCFS denotes an approach integrating
IBk with an algorithm of feature selection, a technique for determining relevant
features from the original features of cases. The algorithm chosen is CfsSub-
setEval available in Weka. IBk is extended to include feature selection by only
considering relevant features when finding the similar cases to Q; (3) IBkLVF
denotes as an approach integrating IBk with the feature selector Consistency-
SubsetEval in Weka; (4) IBkIG denotes as an approach integrating IBk with an

2 http://www.ics.uci.edu/˜mlearn/MLRepository.html
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algorithm of feature weighting, a technique for predicting optimal weights of the
original features of cases. The chosen algorithm is InfoGainAttributeEval avail-
able in Weka. Integrating IBk with feature weighting is straightforward−features
of cases (including Q) can be weighted by feature weighting, and then such fea-
tures are used to find the similar cases to Q; and (5) IBkCS denotes an approach
that integrates IBk with the feature weighting evaluator ChiSquaredAttributeE-
val available in Weka [21]. We also call these k-NN based approaches classifiers,
since these will be used for classification tasks.

In the context of the k-NN classifiers, given Q, classification is done using
two stages: the first is to retrieve a set of similar cases RR to Q using similarity
knowledge, and the second is to classify Q using the solutions (classes) in RR.
In the context of USIMSCAR, these stages can be seen as follows. The first is
to retrieve a set of useful cases and rules RR regarding Q using similarity and
association knowledge, and the second is to classify Q using information driven
in RR. Our work is focused on the first stage. The second stage is often covered
by voting [14]. We choose two well-known voting schemes to perform this stage:
(1) majority voting−the majority solution in RR is chosen as a solution for
Q, and (2) distance weighted voting−each object O ∈ RR gets to vote on the
solution of Q with a vote weighted by its similarity to Q (in the context of the
k-NN classifiers) or usefulness regarding Q (in the context of USIMSCAR).

Table 4 provides a summary of the medical datasets used in our experiments.

Table 4. The medical datasets used in the experiments

Dataset No of Cases No of Attributes
Attr Type

No of Classes
Numeric Nominal

Breast Cancer (BC) 286 9 9 2
Breast Cancer Wins (BCW) 683 10 10 2
Breast Tissue (BT) 106 9 9 6
Pima Indian Diabetes (PID) 768 9 9 2
StatLog Heart Disease (SHD) 270 13 7 6 2
New Thyroid (THY) 215 5 5 3

For our evaluation criteria, we use two metrics widely used for evaluating clas-
sifiers. The first is the classification accuracy that has been very often assumed
to be the best performance indicator for evaluating classifiers. It measures the
proportion of correctly classified instances out of all the tested instances. How-
ever, this accuracy does not take into account the cost of making wrong decisions.
To supplement this lack, we choose F-measure. F-measure is defined as the har-
monic mean between precision (P) and recall (R), denoted as F-measure = 2PR

P+R .
P represents the proportion of the instances, which truly have a class X , among
all those classified as a class X . R indicates the proportion of the instances, clas-
sified as a class X , among all those instance having a class X . A high F-measure
value indicates that both P and R are reasonably high.

USIMSCAR and the five k-NN based classifiers compared (simply 5CF) are
all tested with six medical datasets by using 10-fold cross-validation. In this val-
idation practice, each dataset is partitioned into ten subsets. Of the ten subsets,
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a single subset is retained as testing data, and the remaining nine subsets are
used as training data. The cross-validation process is then repeated ten times
(the folds), with each of the ten subsets used exactly once as the testing data.

The similarity knowledge, used in the experiments, is encoded as a similarity
measure using the global-local principle explained in Section 3.1. Given a new
problem Q and a case C, their similarity is defined as the function SIM in Eq.
1. We configured that this function is equally used in 5CF and USIMSCAR. To
perform Algorithm 1, we use the following parameters: minsupp = 0.1 (10%);
minsim = 0.95 (95%); min-interesting= 0.7 (70%); and minitemsize = 0.5 ∗ N ,
where N is the total number of the attributes of instances in the training data.

6.2 Results and Analysis

For each dataset, we first report the mean number of scars generated by perform-
ing Algorithm 1, where the mean is attained by applying 10-fold cross-validation:
BC:228, BCW: 1513, BT: 6013, PID: 524, SHD: 676, and THY: 1073. We found
that the number of the scars generated increases with the increase in the number
of the attributes of instances for each dataset. However, interestingly, the num-
ber of the scars acquired from BT is the highest as 6010, although the number of
instances in the training data is the lowest as 96 (106 * 0.9). This was occurred,
since some items in BT relatively appear very frequently.

To test approaches (USIMSCAR and 5CF), we need to find a best value for the
top k that indicates the number of the most similar cases to a new problem Q. We
test 5CF using various values for the k, ranging from 1 to 15, since we observed
that increasing k beyond 15 hardly changed the results. To run USIMSCAR, we
also need to find a value for the top k that indicates the number of the most
similar cases and scars to Q. We tested USIMSCAR using the same value range
for finding it. Our comparison purposes, we finally use the best result obtained
from the use of the best choice of the k in terms of classification accuracy (CA)
and F-measure (FM).

Results Using Majority Voting. We first present the results of USIMSCAR
and 5CF using majority voting in terms of CA. Table 5 shows a summary of the
results. The best approach is denoted in boldface for each dataset.

As observed in Table 5, USIMSCAR performs best for three dataset (BCW,
BT, and THY). For BCW, its improvement over 5CF ranges from 0.44% to
0.73%. For BT, the improvement is up to 6.60%. For THY, the improvement
is consistently equal to 1.4%. Whereas USIMSCAR occupies 2nd place for the
datasets (BC, PID, and SHD). Thus, it outperforms the other four classifiers for
the datasets. For BC, PID, and SHD, it performs better than those classifiers
with a range of 1.75% - 2.45%, 0.39% - 1.43%, and 0.74% - 1.48%, respectively.

Table 6 shows a summary of the results of USIMSCAR and 5CF in terms of
FM. The best one is also denoted in boldface for each dataset. As can be seen,
USIMSCAR outperforms 5CF with three (BCW, BT, and THY) out of the six
datasets. For BC, and BCW, its improvement ranges from 0.09% to 4.9%, and
0.47% to 0.78%, respectively. For THY, its improvement is consistently equal
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Table 5. The best results using majority voting in terms of classification accuracy (%)

Dataset USIMSCAR IBk IBkCFS IBkLVF IBkIG IBkCS

BC 75.874 74.126 76.224 73.776 73.427 73.427
BCW 97.657 97.218 97.218 97.218 96.925 97.218
BT 71.698 71.698 65.094 67.925 69.811 70.755
PID 75.781 74.349 77.214 75.000 74.870 75.391
SHD 83.333 82.593 81.852 82.222 85.185 81.852
THY 97.674 96.279 96.279 96.279 96.279 96.279

Table 6. The best results using majority voting in terms of F-measure (%)

Dataset USIMSCAR IBk IBkCFS IBkLVF IBkIG IBkCS

BC 68.744 65.147 68.653 64.896 63.840 65.147
BCW 97.419 96.946 96.946 96.946 96.643 96.946
BT 71.178 71.465 63.249 65.127 67.689 68.435
PID 72.212 70.751 74.137 71.923 71.463 71.923
SHD 83.078 82.339 81.561 82.000 84.966 82.725
THY 96.883 95.084 95.084 95.084 95.084 95.084

to 1.80%. USIMSCAR occupies 2nd place for the other three datasets (BT,
PID, and SHD). Thus, it performs better than the other four classifiers for the
datasets. For BT, PID, and SHD, it outperforms these classifiers with a range
of 2.74% - 7.93%, 0.29% - 1.46%, and 0.35% - 1.52%, respectively.

Through Tables 5 and 6, we find that USIMSCAR outperforms 5CF for the six
datasets in 27 out of 30 comparisons in terms of both CA and FM. It indicates
that using majority voting USIMSCAR achieves better performance in 90% of
the cases than 5CF in terms of the metrics.

Results Using Weighted Voting. We now analyze the experimental results
of USIMSCAR and 5CF using weighted voting in terms of CA. Table 7 shows
a summary of the results. The best one is denoted in boldface for each dataset.
As can be observed, USIMSCAR outperforms 5CF for all the six datasets. The
improvement of USIMSCAR over them for each dataset is as follows. For BC,
BCT, BT, PID, SHD, and THY, it is 4.90% - 6.64%, 0.29% - 0.58%, 6.64% -
13.20%, 10.42% - 13.15%, 5.93% - 7.78%, and 1.40%, respectively.

Table 8 shows a summary of the results of USIMSCAR and 5CF in terms
of FM. The best one is also denoted in boldface for each dataset. As observed,
USIMSCAR outperforms 5CF for all the six datasets. The improvement of USIM-
SCAR over them for each dataset is as follows. For BC, BCT, BT, PID, SHD, and
THY, it is 10.19% - 12.12%, 0.32% - 0.62%, 6.16% - 14.16%, 13.83% - 15.15%,
6.10% - 7.83%, and 1.80%, respectively.

Through Tables 7 and 8, we find that USIMSCAR outperforms 5CF for the six
datasets in all 30 comparisons in both CA and FM. This means that USIMSCAR
achieves better performance in 100% of the cases than the classifiers in terms of
both metrics.
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Table 7. The best results using weighted voting in terms of classification accuracy (%)

Dataset USIMSCAR IBk IBkCFS IBkLVF IBkIG IBkCS

BC 79.021 73.427 • 73.776 • 72.727 • 72.378 • 74.126 •
BCW 97.657 97.218 97.218 97.365 97.072 97.218
BT 78.302 71.698 • 65.094 • 67.925 • 69.811 • 71.698 •
PID 87.500 74.479 • 77.083 • 75.391 • 74.479 • 74.349 •
SHD 89.630 82.222 • 82.222 • 81.852 • 83.704 • 82.593 •
THY 97.674 96.279 96.279 96.279 96.279 96.279

Table 8. The best results using weighted voting in terms of F-measure (%)

Dataset USIMSCAR IBk IBkCFS IBkLVF IBkIG IBkCS

BC 74.251 64.053 • 65.245 • 62.517 • 62.127 • 64.053 •
BCW 97.421 96.946 96.946 97.104 96.798 96.946
BT 77.626 71.465 • 63.466 • 65.127 • 67.689 • 68.435 •
PID 86.140 71.177 • 74.055 • 72.307 • 70.995 • 72.307 •
SHD 89.553 82.034 • 81.942 • 81.723 • 83.451 • 81.723 •
THY 96.883 95.084 95.084 95.084 95.084 95.084

Using the results shown in Tables 5 - 8, to find whether the performance
improvement of USIMSCAR in terms of CA and FM is statistically significant
over 5CF, we carried out statistical tests. A common approach for measuring a
significant test for a difference between two proportions is the Z-test [22]. We
performed statistical tests using the Z-test at 90% confidence. In the tables,
‘•’ indicates that USIMSCAR attains a significant improvement over the target
classifier at 90% confidence. As observed in Tables 5 and 6, using majority voting,
there is no statistical difference between USIMSCAR and 5CF in terms of both
CA and FM. However, as seen in Tables 7 and 8, 67% of comparisons (20 out of 30
comparisons) between USIMSCAR and 5CF are statistically significant in terms
of both CA and FM. We note that insignificant improvement of USIMSCAR over
5CF does not mean that there is no differences between them, merely that the
tests were unable to detect significance differences. As Keen [23] indicated, such
improvement still can be important if it occurs repeatedly in many contexts.
Thus, the insignificant improvement of USIMSCAR may be still valuable, and
this is where a wide range of tests will be additionally carried out.

We emphasize that for all the six datasets, USIMSCAR using weighting voting
(UWV) outperforms USIMSCAR using majority voting (UMV) in terms of both
CA and FM. As observed in Table 9, UWV attains better performance than
UMV in the 4.63% of the occasions in terms of CA on average. It attains better
performance than UMV in the 5.34% of occasions in terms of FM on average.
This findings indicate that it is more useful to utilize the quantified “usefulness
information” of objects in the retrieval result RR of USIMSCAR, rather than
utilizing merely distribution information of the solutions in RR. Recall that UWV

is configured to perform using the usefulness of objects in RR, which is quantified
using both similarity and association knowledge. Whereas UMV is configured to
perform using distribution information of solutions in RR.
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Table 9. USIMSCAR with two voting schemes

(a) In classification accuracy

Dataset UMV UWV Diff

BC 75.874% 79.021% 3.147%
BCW 97.657% 97.657% 0%
BT 71.698% 78.302% 6.604%
PID 75.781% 87.500% 11.719%
SHD 83.333% 89.630% 6.297%
THY 97.674% 97.674% 0%
Mean 83.670% 88.297% 4.628%

(b) In F-measure

Dataset UMV UWV Diff

BC 68.744% 74.251% 5.507%
BCW 97.419% 97.421% 0.002%
BT 71.178% 77.626% 6.448%
PID 72.212% 86.140% 13.928%
SHD 83.078% 89.553% 6.475%
THY 96.883% 96.883% 0%
Mean 81.586% 86.979% 5.393%

7 Related Work

SBR has been successfully applied in various application domains, such as med-
ical diagnosis [2] and help-desk service [3], to predict useful cases with respect
to solving the target problem. As mentioned in Section 6, SBR is typically im-
plemented through k-NN.

Over the years, researchers have extensively studied k-NN to enhance its accu-
racy. For example, it is shown that k-NN can be integrated with feature selection
[24] or feature weighting [25]. As other trends, to enhance SBR, much work fo-
cuses on integrating SBR with machine learning, domain knowledge, and adap-
tation knowledge. The evolution of machine learning has resulted in retrieval
approaches that combine SBR with rule-induction (RI) methods to improve
SBR [26,9]. RI systems learn domain-specific knowledge, from stored cases, of-
ten represented as IT-THEN rules. Once this knowledge is available, SBR is
augmented with rule-based reasoning using this knowledge. Several researchers
propose a retrieval approach, in which similarity assessment during SBR is in-
tegrated with domain knowledge [8]. Aamodt [11] proposes an approach that
cases are enriched with domain knowledge. Domain knowledge often represents
the knowledge about the environment in which the target system operates, e.g.
facts, heuristics. These approaches aim to guide the retrieval of relevant cases
using domain knowledge. Some work tries to enhance SBR using adaptation
knowledge. For example, the adaption-guided retrieval (AGR) approach is pro-
posed [7], in which adaptation knowledge indicates whether a case can be easily
modified to fit the new problem. In AGR, matches between the target problem
and cases are done, only if there is enough evidence existed in adaptation knowl-
edge that such matches can be catered for during retrieval. USIMSCAR differs
from the above approaches in three aspects:

– Knowledge acquisition: The acquisition of both domain knowledge and adap-
tation knowledge is usually known as a very complex and difficult task [8],
thus often leads to knowledge bottleneck phenomenon. The acquisition is
also very often done with the support of domain experts [7,8]. However, the
acquisition of association knowledge (AK) is straightforward, since AK is
acquired from stored cases. This is also efficient, since acquisition is auto-
matically done using association rule mining.
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– Knowledge formalization: AK is formalized by capturing interesting associ-
ations, between known problem features and known solutions, shared by a
large number of cases. In this context, this formalization can be compared
to feature selection and feature weighting, since they focus on estimating
the relevancy of certain problem features highly correlated to specific known
solutions from the CBR viewpoint. However, they are often based on find-
ing only relationships between single individual features and each solution,
ignoring interesting relationships between combinations of features and each
solution. The latter relationships may be curial in a certain circumstance.
For example, two individual features may be strongly related to a certain
solution but together may not, or vice versa. In contrast, AK can represent
both kinds of relationships, thereby providing enriched relationships between
the features of problems and solutions. This benefit originally comes from
the use of association rule mining, which enables to extract all interesting
correlations and frequent patterns derived in a case base.

– Knowledge exploitation: The uniqueness of USIMSCAR lies in the use of
AK in conjunction with similarity knowledge (SK). This exploitation can
be compared to the usage of the rules generated by RI methods from an
analysis of cases. We note that this usage is classified into two schemes:
one for weighting features [9], and the other for generating a solution for a
given problem without using knowledge derived from similarity measurement
between a given problem and cases (i.e. SK) [26]. In contrast, we leverage
combined information inherent in both SK and AK for the retrieval process
in CBR.

8 Conclusion and Future Work

In this paper, we proposed a new retrieval strategy USIMSCAR that outper-
forms similarity-based retrieval (SBR). Its uniqueness lies in leveraging associa-
tion knowledge in conjunction with similarity knowledge during CBR retrieval.
Also, we proposed a unique approach for extracting and representing association
knowledge using association rule mining techniques. We evaluated USIMSCAR
in comparison with SBR using medical datasets found in UCI ML Repository.
The experimental results demonstrated that USIMSCAR is an effective retrieval
strategy for CBR that qualitatively outperforms SBR.

USIMSCAR can be extended to cases, where each problem is represented
by complex structures. In CBR, case problems can be characterized by not only
attribute-value pairs, but also more complex structures like object-oriented (OO)
or hierarchical (HR) representation [6]. The OO representation utilizes the data
modeling approach of OO paradigm such as “is-a”. In the HR representation, a
case problem is characterized through multiple levels of abstraction, and its at-
tribute values reference nonatomic cases. For USIMSCAR to treat the case prob-
lems characterized by such representations, two issues must be addressed−how to
formalize similarity knowledge and association knowledge. To address the former,
one may use the similarity approaches proposed in [27]. To address the latter,
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one may integrate the soft-matching criterion and extended Apriori algorithms
[28,29] for association rule mining in OO data and HR data. USIMSCAR can
also be extended to cases, where each case problem is associated with more than
one solution. This can be simply generalized into the occasion−a case problem
is associated with one solution. The generalization is possibly done by splitting
a case C into k number of sub cases, according to its k number of solutions. All
these cases are forced to have the same case ‘id’ of C. For example, there is a case
C = (X, Y ) (id = C), where X is a problem and Y is a corresponding solution.
Assume that X consists of two treatments {2-tylenol, 2-aspirin}. For C to be
used in USIMSCAR, we split C into two sub cases, whose ids are the same of
C. By doing so, we obtain two cases: C = (X,2-tylenol) and C = (X,2-aspirin).
Then, USIMSCAR can run for these cases without modification.
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