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Abstract. Retrieval is often considered the most important phase in
Case-Based Reasoning (CBR), since it lays the foundation for the over-
all performance of CBR systems. In CBR, a typical retrieval strategy
is realized through similarity knowledge and is called similarity-based
retrieval (SBR). In this paper, we propose and validate that associa-
tion analysis techniques can be used to enhance SBR. We propose a
new retrieval strategy USIMSCAR that achieves the retrieval process
in CBR by integrating similarity and association knowledge. We evalu-
ate USIMSCAR, in comparison with SBR, using the Yahoo! Webscope
Movie dataset. Through our evaluation, we show that USIMSCAR is an
effective retrieval strategy for CBR that strengthens SBR.

1 Introduction

The premise of CBR is that experience in the form of past cases can be leveraged
to solve new problems. In CBR, experiences are stored in a database known as a
case base, and an individual experience is called a case. Typically, there are four
well-organized phases adopted in CBR [1]: Retrieve one or several cases consid-
ered useful for solving a given target problem, Reuse the solution information
of the retrieved cases, Revise the solution information to better fit the target
problem, and Retain the new solution once it has been confirmed or validated.

Retrieval is considered a key phase in CBR, since it lays the foundation for
overall performance of CBR systems [2]. Its aim is to retrieve useful cases that
can be successfully used to solve a new problem. If the retrieved cases are not
useful, CBR systems will not eventually produce any good solution for the new
problem. To achieve the retrieval process, CBR systems typically rely on a re-
trieval strategy that exploits similarity knowledge and is referred to as similarity-
based retrieval (SBR) [3]. In SBR, similarity knowledge aims to approximate the
usefulness of stored cases with respect to the target problem [4]. This knowledge
is usually encoded in the form of similarity measures used to compute similarities
between a new problem and the cases. By using similarity measures, SBR finds
cases with higher similarities to the new problem, and then their solutions are
utilized to solve the problem. Thus, it is evident that SBR tends to rely strongly
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on similarity knowledge, ignoring other forms of knowledge that can be further
leveraged for improving the retrieval performance [3,4,5,6].

In this paper, we propose that association analysis of stored cases can im-
prove traditional SBR. We propose a new retrieval strategy USIMSCAR that
leverages association knowledge in conjunction with similarity knowledge. Asso-
ciation knowledge is aimed to represent certain interesting relationships, shared
by a large number of cases, acquired from stored cases using association rule
mining. We show USIMSCAR improves SBR through an experimental evalua-
tion using the “Yahoo! Webscope Movie” dataset. This paper is organized as
follows. Section 2 presents our research motivation. Section 3 reviews the related
work. Section 3 presents a background of similarity knowledge and association
knowledge. Section 4 presents our approach for extracting and representing as-
sociation knowledge. Section 5 presents the USIMSCAR algorithm. Section 6
evaluates USIMSCAR in comparison with SBR. Section 7 presents our conclu-
sion and future research directions.

2 Motivation

To illustrate our research motivation, we use a medical diagnosis scenario pre-
sented in [7]. Consider a case base D that consists of five patient cases P1, ...,
P5 shown in Table 1. Each case is represented by a problem described by 5
attributes (symptoms) A1, ..., A5, and a corresponding solution described by an
attribute (diagnosis) A6. Our aim is to determine the correct diagnosis for a new
patient Q. We note that Q was suffering from ‘appendicitis’ as specified in [7],
and this therefore represents the correct diagnosis.

Table 1. A patient case base

Cases
Local Other Fever Appetite Age Diagnosis Similarity

Pain(A1) Pain(A2) (A3) Loss(A4) (A5) (A6) to Q

p1 right flank vomit 38.6 yes 10 appendicitis 0.631
p2 right flank vomit 38.7 yes 11 appendicitis 0.623
p3 right flank vomit 38.8 yes 13 appendicitis 0.618
p4 right flank sickness 37.5 yes 35 gastritis 0.637
p5 epigastrium nausea 36.8 no 20 stitch 0.420
Q right flank nausea 37.8 yes 14 ?

Weight 0.91 0.78 0.60 0.40 0.20

To predict a diagnosis for Q, SBR retrieves the most similar cases to Q by
identifying the cases whose attributes are similar to those of Q using a similarity
metric. We use the following metric, the same one used in the work [7], measuring
the similarity between Q and each case p ∈ D,

SIM(Q,p) =

∑n
i=1 wi · sim(qi, pi)

∑n
i=1 wi

,

sim(qi, pi) =

⎧
⎪⎨

⎪⎩

1 − |qi−pi|
Amax

i −Amin
i

, if Ai is numeric,

1, if Ai is discrete & qi = pi,

0, otherwise,

(1)
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where wi is a weight assigned to an attribute Ai, qi and pi are values of Ai

of Q and p respectively, n is the number of attributes of Q and p (i.e. n=5),
sim(qi, pi) denotes a similarity measure between qi and pi, and Amax

i and Amin
i

are the maximum and minimum values, respectively, that Ai takes on. Using the
above metric, assume that SBR chooses the most similar case to Q. As seen in
Table 1, p4 is thus chosen, since it is the most similar case to Q. It means that a
diagnosis choice for Q is ‘gastritis’. But it turned out to be wrong, since Q suf-
fered from ‘appendicitis’ as mentioned above. To overcome the problem, our idea
is to extract, represent, and exploit the knowledge of how known problems are
highly associated with known solutions in D. In D, we may obtain the knowledge
that the problems of cases p1, p2 and p3 are highly associated with ‘appendici-
tis’, while those of a case p4 with ‘gastritis’. The former association strength S1

may be higher than the latter one S2, since S1 is supported by three cases, while
S2 by a single case. If such strength were to be appropriately quantified, and
combined with the similarities in shown Table 1, a diagnosis for Q can be more
accurately determined. This is the key idea of our proposed USIMSCAR.

3 Related Work

SBR has been widely used in various CBR application domains, such as medi-
cal diagnosis [8] and product recommendation [9], to predict useful cases with
respect to the target problem Q. It is typically implemented through k-nearest
neighbor retrieval or simply k-NN [2]. In a CBR context, the idea of k-NN is that
the retrieval process in CBR is achieved through retrieving the k most similar
cases to Q. Thus, the quality of the employed similarity measures for determin-
ing those cases is an important aspect in k-NN. Over the years, researchers have
studied k-NN to enhance its accuracy. For example, it is shown that k-NN can
be integrated with feature selection (FS) [10]. FS is a technique for determining
relevant features (or attributes) from the original features of cases. k-NN is easily
extended to include FS by only considering relevant features when computing
the similarity between Q and each case.

To enhance SBR, much work has also focused on integrating SBR with domain
knowledge and adaptation knowledge. For example, Stahl [4] proposes a retrieval
approach in which similarity assessment during SBR is integrated with domain
knowledge. Aamodt [11] proposes an approach that cases are enriched with do-
main knowledge that guides the retrieval of relevant cases. Adaptation knowledge
is also used to enhance SBR in which this knowledge indicates whether a case can
be easily modified to fit the new problem [3]. In this approach, matches between
the target problem and cases are done, only if there is evidence in adaptation
knowledge that such matches can be catered for during retrieval.

Our approach for enhancing SBR differs from the above approaches in three as-
pects: (1) While many kinds of learnt and induced knowledge has been utilized, we
leverage associationknowledge thathasnotbeenused for retrieval inCBRsystems.
(2) The acquisition of both domain and adaptation knowledge is usually known as
a very complex and difficult task, thus often leads to knowledge bottleneck phe-
nomenon [4]. However, association knowledge acquisition is straightforward, since
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it is automatically acquired from stored cases, a fundamental knowledge source
in CBR, using association rule mining. (3) Association knowledge extraction is
achieved through capturing strongly evident associations between known problem
features and solutions shared by a large number of cases. This scheme can be com-
pared to FS, since in a CBR context it mainly focuses on estimating the relevance
of problem features highly correlated to known solutions. However, FS usually as-
sumes feature independence, ignoring identifying interesting relationships between
problem features, dependent on each other, and each solution. In contrast, associa-
tion knowledge extraction includes and considers all interesting frequent patterns
and association structures from a given case base using association rule mining.

4 Background of Similarity and Association Knowledge

Prior to presenting our proposed USIMSCAR, we provide a background of simi-
larity and association knowledge. We first present our case representation scheme
that is the basis for representing both similarity and association knowledge. To
represent cases, many CBR systems generally adopt well-known knowledge rep-
resentation formalisms, such as attribute-value pairs and structural representa-
tions [4]. In our work, we choose the attribute-value pairs representation due
to its simplicity, flexibility and popularity. Let A1, ..., Am be attributes defined
in a given domain. An attribute-value pair is a pair (Ai, ai), where Ai is an at-
tribute (or feature1) and ai is a value of Ai∈[1,m]. A case C is a pair C = (X, Y )
where X is a problem, represented as X = {(A1, a1), ..., (Am−1, am−1)}, and Y
is the solution of X , represented as Y = (Am, am). We call an attribute Am a
solution-attribute. A case base D is a collection of cases.

4.1 Background of Similarity Knowledge

In a CBR context, we refer to similarity knowledge as knowledge encoded via
measures computing the similarities between the target problem and stored
cases. To formulate the measures, CBR systems often use a widely used princi-
ple. This is the local-global principle that decomposes a similarity measure by
local similarities for individual attributes, and a global similarity aggregating the
local similarities [4]. An accurate definition of local similarities relies on attribute
types. A global similarity function can be arbitrarily complex, but usually simple
functions (e.g. weighted average) are used in many CBR systems. Referring to
Eq. 1 SIM is a global similarity function, and sim is a local similarity function.

4.2 Background of Association Knowledge

Our premise is that SBR can be enhanced by the inclusion of association knowl-
edge representing evidently interesting relationships shared by a large number of
stored cases. It is extracted from stored cases and represented using association
1 To simplify the presentation, we do not distinguish between terms “attributes” and

“features”, and use these terms interchangeably.
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rule mining [12], class association rule mining [13] and soft-matching criterion
[14], which are outlined in the following.

Association rule mining [12] aims to mine certain interesting associations in
a transaction database. Let I be a set of distinct literals called items. A set of
items X ⊆ I is called an itemset. Let D be a set of transactions. Each transaction
T ∈ D is a set of items such that T ⊆ I. We say that T contains an itemset
X , if X ⊆ T holds. Every association rule has two parts: an antecedent and a
consequent. An association rule is an implication of the form X → Y , where
X ∈ I is an itemset in the antecedent and Y ∈ I is an itemset in the consequent,
and X ∩ Y = ∅. The rule X → Y has support s in D if s% of transactions
in D contain X ∪ Y . This holds in D with confidence c if c% of transactions
in D that contain X also contain Y . Association rule mining can also be used
for discovering interesting relationships among stored cases. In a CBR context,
a transaction can be seen as a case, and an item as an attribute-value pair.
Referring to Table 1, we can mine a rule r1 : (A1, right flank) → (A2, vomit).
Let X be an item (A1, right flank). Let Y be an item (A2, vomit). The support
of r1 is 0.6, since X and Y occur together in three out of five cases in D. The
confidence of r1 is 0.75, since Y occurs in three out of four cases that contain X
in D. Apriori [12] is one of the traditional algorithms for association rule mining.

Class association rules (cars) [13] is a special subset of association rules whose
consequents are restricted to a single target variable. In a CBR context, cars can
be seen as special association rules whose consequents only hold special items
formed as pairs of a “solution-attribute” and its values. We call such an item a
solution-item. Thus, a car has the form X → y, where X ⊆ I an itemset in the
antecedent and y ∈ I is a solution-item in the consequent. Our aim of building
association knowledge is to represent the knowledge encoding how certain known
problems are associated with known solutions in a case base. For the purpose,
we use the form of cars, since it is suited for this goal. Note that the car X → y
encodes an association between an itemset X (i.e. attribute-value pairs of known
problems), and a solution-item y (i.e. the corresponding solution).

Consider the association rule X → Y . A limitation of traditional association
rule mining algorithms (e.g. Apriori [12]) is that itemsets X and Y are discovered
using equality relation. Unfortunately, when dealing with items similar to each
other, these algorithms may perform poorly. For example, a supermarket sales
database, Apriori cannot find rules like “80% of the customers who buy products
similar to milk (e.g. cheese) and products similar to eggs (e.g, mayonnaise) also
buy bread.” To address this issue, SoftApriori [14] was proposed. It uses the soft-
matching criterion, where the antecedent and the consequent of association rules
are found using similarity assessment. By doing so, this criterion can be used to
model richer relationships among case features than the equality relation.

5 Association Knowledge Formalization

This section presents our approach for extracting and representing association
knowledge used the techniques outlined in Section 3. The aim of building associa-
tion knowledge is two-fold. The first is to represent strongly evident, interesting
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associations between known problem features and solutions shared by a large
number of cases. The second is to leverage these associations along with simi-
larity knowledge in our proposed USIMSCAR to improve SBR.

We propose to represent association knowledge via cars whose antecedents
are determined by applying the soft-matching criterion. We refer to these rules
as soft-matching class association rules (scars). A scar X → y implies that the
target problem Q is likely to be associated with the solution contained in an
item y, if the problem features of Q are highly similar to an itemset X .

Let D be a set of cases, where each case is characterized by attributes A1, ...,
Am. We call a pair (Ai, ai)i∈[1,m−1] an item. We call a pair (Am, am) a solution-
item. Let I be a set of items. A set L ⊆ I with k = |L| is called a k-itemset or
simply an itemset. Let sim(x, y) be a function computing the similarity between
two items x, y ∈ I in terms of their values. We say that x and y are simi-
lar, iff sim(x, y) ≥ a user-specified minimum similarity (minsim). Given two
itemsets X, Y ⊆ I (|X | ≤ |Y |), ASIM(X, Y ) is a function that computes the
asymmetric similarity of X with respect to Y , defined as

∑
x∈X,y∈Y

sim(x,y)
|X| ,

where x, y are items with the same attribute label. Let X1 be a 2-itemset
{(A1, a), (A2, b)}. Let Y1 be a 2-itemset {(A1, a

′), (A2, b
′)}. Assuming similar-

ity functions for A1 and A2 are denoted as simA1 and simA2 respectively,
ASIM(X1, Y1) = (simA1(a, a′) + simA2(b, b′))/2. We say that X is a soft-
subset of Y (X ⊆soft Y ), iff ASIM(X, Y ) ≥ minsim; or Y softly contains
X . The soft-support-sum of an itemset X ⊆ I is defined as the sum of the
asymmetric similarities of X with respect to cases in D that softly contain X ,
softSuppSum(X) =

∑
X⊆softC∈D ASIM(X, C). The soft-support of X is de-

fined as softSupp(X) = softSuppSum(X)/|D|. The soft-support-sum of a rule
X → y is defined as the sum of the asymmetric similarities of X with respect
to cases in D that softly contain X and contain y, softSuppSum(X → y). The
soft-support of this rule is defined as softSupp(X → y) = softSuppSum(X →
y)/|D|. The soft-confidence-sum of a rule X → y is defined as the sum of the
asymmetric similarities of X with respect to cases in D that softly contain X also
contain y, softConfSum(X → y). The soft-confidence of this rule is defined as
softConf(X → y) = softConfSum(X → y)/|D|.

The key operation for scars mining is to find all ruleitems that have soft-
supports ≥ (a user-specified minimum support) (minsupp). We call such ruleit-
ems frequent ruleitems. For all the ruleitems that have the same itemset in
the antecedent, one with the highest interestingness is chosen as a possible rule
(PR). To measure the interestingness of association rules, support and confi-
dence are typically used. On some occasions, a combination of them is used.
Often, a rationale for doing so is to define a single optimal interestingness by
leveraging their correlations. We choose the Laplace measure (LM) [15] that
combines soft-support and soft-confidence such that they are monotonically re-
lated. Given a ruleitem r : X → y, its LM Laplace(r) can be denoted as

|D|·softSupp(X→y)+1
|D|·softSupp(X→y)/softConf(X→y)+2 . If Laplace(r) ≥ a user-specified minimum
level of interesting (min-interesting), we say r is accurate. A candidate set of
scars consists of all the PRs that are frequent and accurate.
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Let k-ruleitem be a ruleitem whose antecedent has k items. Let Fk be a
set of frequent k-ruleitems. The following is a description for the scars mining
algorithm: (1) For 1-ruleitems X ⊆ I, we find F1 = {{X}|softSupp(X) ≥
minsupp}. A set SCAR1 is then generated by only choosing PRs from F1. (2)
For each k subsequent pass, we find a set of new possibly frequent ruleitems
CRk using Fk−1 found in the (k − 1)th pass. We then generate a new set Fk

by extracting ruleitems in CRk whose soft-support ≥ minsupp. A set SCARk

is generated by only choosing PRs from Fk. (3) From SCAR1, ..., SCARk,
we choose only sets whose i ∈ [1, k] ≥ a user-specified minimum ruleitem size
(minitemsize), and store them in a set SCARS. Our idea is to choose a small
representative subset of frequent ruleitems from the large number of resulting
frequent ruleitems. The longer the frequent ruleitem, the more significant it is
[16]. We perform a rule pruning on ruleitems in SCARS. A rule r is pruned, if
Laplace(r) < min-interesting. The set of ruleitems after the pruning is finally
returned as the set of scars to be used in our proposed USIMSCAR.

6 The USIMSCAR Algorithm

This section presents USIMSCAR that leverages both association and similarity
knowledge to enhance SBR. The main challenge is how to combine similarity and
association knowledge appropriately and effectively, thereby strengthening the
retrieval performance of SBR. This section address this challenge by presenting
the USIMSCAR algorithm. The rationale for leveraging association knowledge
in USIMSCAR falls into two objectives: (1) enhancing the usefulness of the
cases, retrieved by using similarity knowledge as with SBR, with respect to a
new problem Q by including both similarity and association knowledge, and
(2) directly leveraging a number of scars whose usefulness is relatively high with
respect to Q, eventually utilizing such scars with their usefulness in USIMSCAR.

Given a new problem Q, USIMSCAR’s goal is to produce a retrieval result
RR consisting of objects that can be used to solve Q by leveraging similarity
and association knowledge. Such objects are obtained from both stored cases
and scars mined. Let D be a set of cases. Let SCARS be the set of scars mined
from D. Below we present the USIMSCAR algorithm.

(1) From D, we find the k most similar cases to Q, and store them in a set
RC. We denote SIM(Q, C) as the similarity between Q and a case C.

(2) In SCARS, we find the k′ most similar scars to Q, and store them in a set
RS. A question raised here is how to compute the similarity SIM(Q, r) between
Q and a scar r. Its answer lies in our choice of cars representation for scars min-
ing. Note that scars have the identical structure as cases: the antecedent and
consequent correspond to the problem and solution part of cases respectively.
Thus, SIM(r, Q) can be defined in the same way as SIM(Q, C) in (1). To gen-
erate RS, we only consider scars (RCS) in SCARS such that their antecedents
are soft-subsets of cases in RC, rather than all scars in SCARS for efficiency.
Each case C ∈ RC is chosen as a similar case to Q (C ∼ Q). Assuming each scar
r ∈ RCS has the form r : X → y, X is a soft-subset of C (X ⊆soft C). Since
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C ∼ Q and X ⊆soft C, X ⊆soft C ∼ Q can be derived. It implies that RCS is
a particular subset (i.e. soft-subset) of cases in RC similar to Q.

(3) For each case C ∈ RC, we select a scar rC ∈ SCARS. It is chosen if it
has the highest interestingness among those scars in SCARS such that their
antecedents are soft-subsets of C and their consequents are equal to the solu-
tion of C. We then quantify the usefulness of C with respect to Q (USF (C, Q))
by SIM(C, Q) × Laplace(rC). If candidates for rC are chosen more than one,
say m, we use the average of the interestingness of these m scars to com-
pute Laplace(rC). If there is no candidate for rC , we use min-interesting for
Laplace(rC). Note that in SBR, the usefulness of C regarding Q is measured by
SIM(C, Q). Our combination schemes aims to quantify this usefulness by lever-
aging SIM(C, Q) and Laplace(rC). We then cast C to a generic object O that
can hold any cases and scars. O has two fields: O.inst = C, O.usf = USF (C, Q).
The object O is then added to a retrieval result RR.

(4) For each scar r ∈ RS, we quantify the usefulness of r with respect to Q
(USF (r, Q)) by SIM(r, Q) × Laplace(rC). This aims to quantify the usefulness
by combining SIM(r, Q) obtained from similarity knowledge and Laplace(rC)
acquired from association knowledge. We then cast r to a generic object O with
two fields: O.inst = r, O.usf = USF (r, Q). The object O is then added to RR.

(5) We further enhance the usefulness of each object O ∈ RR using the
frequency of solution occurrence among objects in RR. Our premise is that if
O’s solution is more frequent in RR, O is more useful in RR. If O is cast from
a case C, its solution means C’s solution. If O cast from a scar r, its solution is
r’s consequent. Let S be a set of solutions of objects in RR. Let SO be a set of
objects in RR that have the solution equal to the solution of an object O ∈ RR.
For each object O ∈ RR, we compute δ(SO) as δ(SO) = |SO|/|RR| Finally,
we enhance O.usf by multiplying δ(SO). Eventually, each object O ∈ RR with
O.usf is utilized to induce a solution for Q.

We now illustrate how USIMSCAR operates using the case base D shown in
Table 1. From D, we can generate 4 scars shown in Table 2 using the similarity
SIM in Eq. 1.

Table 2. The scars generated

Rules Laplace Soft-subset of

r1: {(A1,right flank),(A2,vomit),(A3,38.6),(A4,yes),(A5,13)} → (A6,appendicitis) 0.922 p1, p2, p3

r2: {(A1,right flank),(A2,vomit),(A3,38.7),(A4,yes),(A5,10)} → (A6,appendicitis) 0.922 p1, p2, p3

r3: {(A1,right flank),(A2,vomit),(A3,38.8),(A4,yes),(A5,10)} → (A6,appendicitis) 0.922 p1, p2, p3

r4: {(A1,right flank),(A2,sickness),(A3,37.5),(A4,yes),(A5,35)} → (A6,gastritis) 0.775 p4

Using the above scars, USIMSCAR takes the following steps (assume k=k′=2):
(1) It finds the 2 most similar cases to Q: RC = {p4, p1} for SIM(Q, p4)=0.637,
SIM(Q, p1)=0.631. (2) It finds the 2 most similar scars to Q: RS = {r1, r4} for
SIM(Q, r1)=0.640, SIM(Q, r4)=0.637. (3) For each case C ∈ RC, rC is chosen.
For p4, r4 is selected. For p1, r1, r2 and r3 are selected. Then, USF (Q, p4) and
USF (Q, p1) are quantified as USF (Q, p4)=0.494, USF (Q, p1)=0.581. Then, p4

with USF (Q, p4) and p1 with USF (Q, p1) are cast to new objects and stored
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in a set RR. (4) For each scar r ∈ RS, its usefulness to Q is quantified as
USF (Q, r1)=0.594, USF (Q, r4)=0.496. Then, these scars with their usefulness
are cast to new objects and stored in RR. (5) Assume that each object in RR has
another field s holding its solution. RR has 4 objects RR = {O1, ..., O4} shown
in Table 3. As observed, there are only two sets of objects regarding solutions.
For each object O ∈ RR, O.usf is enhanced by weighting δ(SO) = |SO|/|RR|.
The enhancement results are shown under the column ‘final usf’ in the table.
Eventually, if we choose the most useful one to Q, we retrieve O3 and its solution
‘appendicitis’, Q really had, is used as a diagnosis for Q.

Table 3. The retrieval result RR

field: inst field: usf field: solution final usf

O1.inst = p4, O1.usf = 0.494, O1.s = gastritis 0.247
O2.inst = p1, O2.usf = 0.581, O2.s = appendicitis 0.291
O3.inst = r1, O3.usf = 0.594, O3.s = appendicitis 0.297
O4.inst = r4, O4.usf = 0.496, O4.s = gastritis 0.248

7 Evaluation

We experimentally show that USIMSCAR improves SBR with respect to re-
trieval performance. Our work has focused on proposing a new retrieval strategy
for CBR. Thus, as a target application task, it is desirable to choose a task
that is highly dependent on retrieval performance in a CBR context. One suit-
able task is case-based classification [17], defined as: given a new problem Q, its
goal is to find similar cases to Q from a case base, and classify Q based on the
retrieved cases. Thus, in principle, this approach is strongly dependent on the
result obtained through retrieval in CBR.

As target SBR approaches to be compared with USIMSCAR, we choose the
following k-NN approaches implemented in Weka, since SBR is typically imple-
mented through k-NN: (1) IB1 is the simplest form of k-NN using the Euclidean
distance to find the most similar case C to Q. (2) IBkBN extends IB1 by using the
best k (i.e. the number of the most similar cases) determined by cross-validation.
(3) IBkFS extends IBkBN by using a feature selector CfsSubsetEval available
in Weka. (4) KStar is an implementation of K* [18], where similarity for finding
the most similar cases to Q is defined through entropy.

In a k-NN approaches context, classification has two stages. The first is to find
similar cases RR to Q using similarity knowledge, and the second is to classify Q
using the solutions in RR. In a USIMSCAR context, the first is to find a set of
“useful cases and rules” RR using “similarity and association knowledge”, and
the second is to classify Q using the solutions of objects in RR. Our work is
focused on the first stage. The second stage can be achieved using voting. Due
to generality, we adopt weighted voting, where objects in RR get to vote, on the
solution of Q, with votes weighted by their significance to Q. For each object
in RR, in SBR the significance is measured using its similarity to Q, while in
USIMSCAR it is measured using its usefulness with respect to Q.
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We use the Yahoo! Webscope Movie dataset (R4) usually used for evaluating
recommender systems. In a CBR context, each instance in R4 has the form
(x, sx): x is a problem description characterized by two user attributes (birthyear,
gender) and ten movie attributes (see Table 4), and sx is the corresponding
solution meaning a rating assigned to a movie by a user. Before testing, we
removed the instances that contain any missing values of any movie attributes,
and redundant movie attributes (e.g. actors are represented using both ‘actor
id’ and ‘name’, so we included only the name). Finally, R4 consists of training
data (74,407 ratings scaled from 1 to 5 rated by 5,826 users for 312 movies), and
testing data (2,705 ratings scaled from 1 to 5 rated by 993 users for 262 movies).

Table 4. Movie information (movie-info)

Attributes Description Type

title movie title String
synopsis movie synopsis String
mpaa rating MPAA rating of movie Nominal
genres list of the genres of movie Set-valued
directors list of the directors of movie Set-valued
actors list of the actors of movie Set-valued
avg-critic-rating average of the critic reviews of movie Numeric
rating-from-Mom rating to movies obtained from the Movie Mom Numeric
gnpp Global Non-Personalized Popularity (GNPP), of

movie, computed by Yahoo! Research
Numeric

avg-rating average movie rating by users in the training data Numeric

For each instance Q in the testing data, our goal is to predict the correct
rating that the user will be likely to rate using the training data. We split it
into three classification tasks taking a user and a movie, and classify a rating
in three rating-scales: RS(5) is a five rating-scale [1,5], RS(3) is a 3 rating-scale
where a rating indicates whether a movie would be liked (> 3), normal (=3) or
disliked (<3), and RS(2) is a 2 rating-scale where a rating indicates whether a
movie would be liked (>3) or disliked (≤3). We evaluate the prediction using
classification accuracy (CA) and predictive accuracy (PA) that are widely used
for classification and recommendations. CA measures the proportion of correctly
classified instances over all the instances tested. PA measures how close predicted
ratings are to the actual user ratings. Mean absolute error (MAE) is widely used
to measure this accuracy,

∑N
i=1 |pi − ri|/N , where pi is a predicted rating, ri is

an actual rating for an instance i, and N is the number of instances tested.
Regarding MAE, lower values are more accurate. We compute the MAE values
for each user in the testing data, and then average over all users in the data.

The similarity knowledge used is encoded as a similarity measure using the
global-local principle. Given a new problem Q and a case, their global similarity
is defined as SIM in Eq. 1, and local similarities are defined on four types. For
numeric and nominal attributes, we used sim in Eq. 1. For set-valued attributes,
we used the Jaccard coefficient. For string attributes, we converted a given string
into a set-valued representation by tokenizing it, and applied the Jaccard coeffi-
cient. We implemented IBkBN, IBkFS and USIMSCAR to be working with SIM
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to find the k most similar cases for Q. The function SIM is also used to find the
k′ most similar scars with respect to Q in USIMSCAR. For the approaches, we
chose a best value for k using cross-validation from 1 to 15. We observed that
increasing k beyond 15 hardly changed the results.

To generate scars from R4, we set minsim, min-interesting, and minitemsize to
arbitrary values 0.95 (95%), 0.7, and 7 respectively. Setting a value for minsupp is
more complex, since it has a stronger effect on the quality of USIMSCAR. If min-
supp is set too high, those possible scars, which cannot satisfy minsupp but with
high interestingness (Laplace measure) values, will not be included. While if min-
supp is set too low, it is possible to generate too many scars including trivial rules.
Both occasions may lead to a reduction in the performance of USIMSCAR. From
our experiments, we observed that once minsupp is set to 0.1, the performance of
USIMSCAR is best. We thus set a value for minsupp to 0.1.

7.1 Results and Analysis

We now present the experimental results of USIMSCAR and the compared k-
NN approaches (simply 4KNN) in terms of both classification accuracy (CA)
and MAE in Tables 5 and 6. For each rating-scale, the best accuracy is denoted
in boldface. The mark “�” indicates that USIMSCAR attains a significant im-
provement over the target measure. For CA, it is discovered by the Z-test [19]
with 95% confidence, and for MAE by the paired t -tests [19] at 95% confidence.
Each number in parentheses denotes the improvement ratio of USIMSCAR over
the target measure.

Table 5 indicates that USIMSCAR achieves 100% better performance than
4KNN in all rating-scales in terms of CA. We find that the 91.6% comparisons
between USIMSCAR and 4KNN are statistically significant in terms of CA.

Table 5. The classification accuracy results

Compared
Classification Accuracy(%)

Classifiers RS(5) RS(3) RS(2)

IB1 46.30 (2.76% �) 72.95 (6.61% �) 75.24 (5.02% �)
IBkBN 48.61 (0.45%) 75.97 (3.59% �) 77.12 (3.14% �)
IBkFS 46.28 (2.78% �) 74.17 (5.39% �) 75.24 (5.02% �)
KStar 44.34 (4.72% �) 74.37 (5.19% �) 75.07 (5.19% �)
USIMSCAR 49.06 79.56 80.26

Table 6. The MAE results

Compared
Predictive Accuracy (MAE)

Classifiers RS(5) RS(3) RS(2)

IB1 .9139 (24.14% �) .3760 (8.76% �) .2476 (5.02% �)
IBkBN .8532 (18.07% �) .3482 (5.98% �) .2288 (3.08% �)
IBkFS .8392 (16.67% �) .3541 (6.57% �) .2376 (4.02% �)
KStar .8710 (19.89% �) .3652 (4.02% �) .2493 (5.19% �)
USIMSCAR .6725 .2884 .1974
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As shown in Table 6, we also find that USIMSCAR achieves 100% better perfor-
mance than 4KNN in all rating-scales in terms of MAE. All the improvements
are deemed to be statistically significant. Through these results, we demon-
strate that USIMSCAR has the ability to retrieve more useful objects (i.e. cases
and scars) with respect to the target problems than SBR. As outlined in the
USIMSCAR algorithm, these objects are identified and quantified by using a
combination of similarity and association knowledge. This further establishes
the validity of the primary motivation of this research that the combination will
lead to improving SBR. The real strength of our evaluation lies in the fact that
USIMSCAR improves SBR for CBR classification using a real-world dataset.

Up to now, we have formalized the recommendation problem as a classifica-
tion problem and shown the improvement of USIMSCAR over k-NN classifiers
in terms of CA and MAE. In a certain context, it is also important to compare
USIMSCAR and existing recommenders. Recommenders are usually classified as
follows: content-based (CB) recommenders recommend items similar to the ones
that the user has liked in the past, collaborative filtering (CF) recommenders
recommend items that other users with similar preferences have liked in the
past, and hybrid recommenders recommend items by combining the above two
approaches. We see that USIMSCAR is also a unifying model realizing a hybrid
recommendation. It differs from CF recommenders in that it exploits content
information of items (movies) with rating information. It also differs from CB
recommenders by using other users’ ratings when building and exploiting asso-
ciation knowledge for rating classification. We compare USIMSCAR with two
well-known hybrid recommenders: CLAYPOOL [20] and MELVILLE [21]. For
CLAYPOOL, we first applied the CF method proposed by [20] to the training
data. We then applied a CB method using IBk to the data. The ratings returned
by these methods were combined by the equal-weighted average to produce a
final rating. MELVILLE uses a CB method to convert a sparse user-ratings ma-
trix UM into a full user-ratings matrix FUM. Given a user, a rating prediction
is made for a new item using a CF method on the FUM. As the CB predictor,
we used IBk. For the CF method, we implemented the algorithm in [21].

The comparison results are seen in Tables 7 and 8. As seen in Table 7,
USIMSCAR outperforms the recommenders in all rating-scales in terms of CA.
We discover that 50% of comparisons between USIMSCAR and the recom-
menders are deemed to be statistically significant through the Z-test at 95%
confidence. As seen in Table 8, USIMSCAR also outperforms both recommenders
in all rating-scales in terms of MAE. We discover that 50% of comparisons be-
tween USIMSCAR and the recommenders are also deemed to be statistically

Table 7. The classification results

Recommenders
Classification Accuracy (%)

RS(5) RS(3) RS(2)

CLAYPOOL 48.95 (0.11%) 77.97 (0.22%) 80.04 (1.59%)
MELVILLE 43.96 (5.10% �) 73.57 (4.40% �) 75.86 (5.99% �)
USIMSCAR 49.06 79.56 80.26
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Table 8. The MAE results

Recommenders
Predictive Accuracy (MAE)

RS(5) RS(3) RS(2)

CLAYPOOL .6954 (2.29%) .3102 (1.28%) .1996 (0.22%)
MELVILLE .7863 (11.38% �) .3579 (6.95% �) .2414 (4.40% �)
USIMSCAR .6725 .2884 .1974

significant by the paired t-test with 95% confidence. In summary, through all
the experiments, we have demonstrated the validity and soundness of our pro-
posed USIMSCAR approach.

8 Conclusion and Future Work

This paper presented a novel retrieval strategy USIMSCAR that can be used in
retrieving useful cases for the target problem. First, we proposed an approach
for extracting and representing association knowledge that represents strongly
evident, interesting associations between known problem features and solutions
shared by a large number of cases. We proposed that this knowledge is encoded
via soft-matching class association rules (scars) using association analysis tech-
niques. We proposed USIMSCAR that leverages useful cases and rules, with
respect to the target problem, quantified by using both similarity and associ-
ation knowledge. This idea to leveraging the combined knowledge during CBR
retrieval clearly distinguishes USIMSCAR from SBR as well as existing retrieval
strategies developed in the CBR research community. We validated the improve-
ment of USIMSCAR over well-known k-NN approaches for implementing SBR
through experiments using the Yahoo! Webscope Movie dataset. The experimen-
tal results showed that USIMSCAR is an effective retrieval strategy for CBR.

In CBR, cases can also be represented by more complex structures, like object-
oriented representation (OO) or hierarchical representation (HR) [2]. OO uti-
lizes the data modeling approach of the OO paradigm, such as inheritance.
In HR, a case is characterized through multiple levels of abstraction, and its
attribute values can reference nonatomic cases [2]. To support these represen-
tations, USIMSCAR must address how to generate similarity knowledge and
association knowledge. To address the former, one may use similarity measures
proposed by [22] for OO data or HR data. To address the latter, one may inte-
grate the soft-matching criterion and extended Apriori algorithms such as OR-
FP [23] for OO data and DFMLA [24] for HR data.
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